{"title":"FlexRay的静态分段调度优化","authors":"M. Lukasiewycz, M. Glaß, J. Teich, Paul Milbredt","doi":"10.1145/1629435.1629485","DOIUrl":null,"url":null,"abstract":"The FlexRay bus is the prospective automotive standard communication system. For the sake of a high exibility, the protocol includes a static time-triggered and a dynamic event-triggered segment. This paper is dedicated to the scheduling of the static segment in compliance with the automotive-specific AUTOSAR standard. For the determination of an optimal schedule in terms of the number of used slots, a fast greedy heuristic as well as a complete approach based on Integer Linear Programming are presented. For this purpose, a scheme for the transformation of the scheduling problem into a bin packing problem is proposed. Moreover, a metric and optimization method for the extensibility of partially used slots is introduced. Finally, the provided experimental results give evidence of the benefits of the proposed methods. On a realistic case study, the proposed methods are capable of obtaining better results in a significantly smaller amount of time compared to a commercial tool. Additionally, the experimental results provide a case study on incremental scheduling, a scalability analysis, an exploration use case, and an additional test case to emphasis the robustness and exibility of the proposed methods.","PeriodicalId":300268,"journal":{"name":"International Conference on Hardware/Software Codesign and System Synthesis","volume":"229 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"121","resultStr":"{\"title\":\"FlexRay schedule optimization of the static segment\",\"authors\":\"M. Lukasiewycz, M. Glaß, J. Teich, Paul Milbredt\",\"doi\":\"10.1145/1629435.1629485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The FlexRay bus is the prospective automotive standard communication system. For the sake of a high exibility, the protocol includes a static time-triggered and a dynamic event-triggered segment. This paper is dedicated to the scheduling of the static segment in compliance with the automotive-specific AUTOSAR standard. For the determination of an optimal schedule in terms of the number of used slots, a fast greedy heuristic as well as a complete approach based on Integer Linear Programming are presented. For this purpose, a scheme for the transformation of the scheduling problem into a bin packing problem is proposed. Moreover, a metric and optimization method for the extensibility of partially used slots is introduced. Finally, the provided experimental results give evidence of the benefits of the proposed methods. On a realistic case study, the proposed methods are capable of obtaining better results in a significantly smaller amount of time compared to a commercial tool. Additionally, the experimental results provide a case study on incremental scheduling, a scalability analysis, an exploration use case, and an additional test case to emphasis the robustness and exibility of the proposed methods.\",\"PeriodicalId\":300268,\"journal\":{\"name\":\"International Conference on Hardware/Software Codesign and System Synthesis\",\"volume\":\"229 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"121\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Hardware/Software Codesign and System Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1629435.1629485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Hardware/Software Codesign and System Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1629435.1629485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FlexRay schedule optimization of the static segment
The FlexRay bus is the prospective automotive standard communication system. For the sake of a high exibility, the protocol includes a static time-triggered and a dynamic event-triggered segment. This paper is dedicated to the scheduling of the static segment in compliance with the automotive-specific AUTOSAR standard. For the determination of an optimal schedule in terms of the number of used slots, a fast greedy heuristic as well as a complete approach based on Integer Linear Programming are presented. For this purpose, a scheme for the transformation of the scheduling problem into a bin packing problem is proposed. Moreover, a metric and optimization method for the extensibility of partially used slots is introduced. Finally, the provided experimental results give evidence of the benefits of the proposed methods. On a realistic case study, the proposed methods are capable of obtaining better results in a significantly smaller amount of time compared to a commercial tool. Additionally, the experimental results provide a case study on incremental scheduling, a scalability analysis, an exploration use case, and an additional test case to emphasis the robustness and exibility of the proposed methods.