A. Gardi, M. Marino, S. Ramasamy, R. Sabatini, Trevor Kistan
{"title":"空中交通管理系统的四维轨迹优化算法","authors":"A. Gardi, M. Marino, S. Ramasamy, R. Sabatini, Trevor Kistan","doi":"10.1109/DASC.2016.7778083","DOIUrl":null,"url":null,"abstract":"This paper presents Multi Objective Trajectory Optimization (MOTO) algorithms that were developed for integration in state-of-the-art Air Traffic Management (ATM) and Air Traffic Flow Management (ATFM) systems. The MOTO algorithms are conceived for the automation-assisted replanning of 4-Dimensional Trajectories (4DT) when unforeseen perturbations arise at strategic and tactical online operational timeframes. The MOTO algorithms take into account updated weather and neighbouring traffic data, as well as the related forecasts from selected sources. Multiple user-defined operational, economic and environmental objectives can be integrated as necessary. Two different MOTO algorithms are developed for future implementation in ATM systems: an en-route variant and a Terminal Manoeuvring Area (TMA) variant. In particular, the automated optimal 4DT replanning algorithm for en-route airspace operations is restricted to constant flight level to avoid violating the current vertical airspace structure. As such, the complexity of the generated trajectories reduces to 2 dimensions plus time (2D+T), which are optimally represented in the present 2D ATM display formats. Departing traffic operations will also significantly benefit from MOTO-4D by enabling steep/continuous climb operations with optimal throttle, reducing perceived noise and gaseous emissions.","PeriodicalId":340472,"journal":{"name":"2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC)","volume":"338 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"4-Dimensional trajectory optimisation algorithm for air traffic management systems\",\"authors\":\"A. Gardi, M. Marino, S. Ramasamy, R. Sabatini, Trevor Kistan\",\"doi\":\"10.1109/DASC.2016.7778083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents Multi Objective Trajectory Optimization (MOTO) algorithms that were developed for integration in state-of-the-art Air Traffic Management (ATM) and Air Traffic Flow Management (ATFM) systems. The MOTO algorithms are conceived for the automation-assisted replanning of 4-Dimensional Trajectories (4DT) when unforeseen perturbations arise at strategic and tactical online operational timeframes. The MOTO algorithms take into account updated weather and neighbouring traffic data, as well as the related forecasts from selected sources. Multiple user-defined operational, economic and environmental objectives can be integrated as necessary. Two different MOTO algorithms are developed for future implementation in ATM systems: an en-route variant and a Terminal Manoeuvring Area (TMA) variant. In particular, the automated optimal 4DT replanning algorithm for en-route airspace operations is restricted to constant flight level to avoid violating the current vertical airspace structure. As such, the complexity of the generated trajectories reduces to 2 dimensions plus time (2D+T), which are optimally represented in the present 2D ATM display formats. Departing traffic operations will also significantly benefit from MOTO-4D by enabling steep/continuous climb operations with optimal throttle, reducing perceived noise and gaseous emissions.\",\"PeriodicalId\":340472,\"journal\":{\"name\":\"2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC)\",\"volume\":\"338 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC.2016.7778083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2016.7778083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
4-Dimensional trajectory optimisation algorithm for air traffic management systems
This paper presents Multi Objective Trajectory Optimization (MOTO) algorithms that were developed for integration in state-of-the-art Air Traffic Management (ATM) and Air Traffic Flow Management (ATFM) systems. The MOTO algorithms are conceived for the automation-assisted replanning of 4-Dimensional Trajectories (4DT) when unforeseen perturbations arise at strategic and tactical online operational timeframes. The MOTO algorithms take into account updated weather and neighbouring traffic data, as well as the related forecasts from selected sources. Multiple user-defined operational, economic and environmental objectives can be integrated as necessary. Two different MOTO algorithms are developed for future implementation in ATM systems: an en-route variant and a Terminal Manoeuvring Area (TMA) variant. In particular, the automated optimal 4DT replanning algorithm for en-route airspace operations is restricted to constant flight level to avoid violating the current vertical airspace structure. As such, the complexity of the generated trajectories reduces to 2 dimensions plus time (2D+T), which are optimally represented in the present 2D ATM display formats. Departing traffic operations will also significantly benefit from MOTO-4D by enabling steep/continuous climb operations with optimal throttle, reducing perceived noise and gaseous emissions.