软件开发工作量预测的最优加性c -模糊回归树

Assia Najm, A. Zakrani, A. Marzak
{"title":"软件开发工作量预测的最优加性c -模糊回归树","authors":"Assia Najm, A. Zakrani, A. Marzak","doi":"10.1109/ICOA55659.2022.9934558","DOIUrl":null,"url":null,"abstract":"There is evidence that precise prediction of the software development effort plays a crucial role in properly monitoring and managing software projects. Researchers have suggested many software effort estimation techniques. Nonetheless, none of these methods performed well in all circumstances. Ensemble models have been recently proposed in the literature to overcome the significant drawbacks of single machine learning approaches. In this study, we proposed a novel model, the ensemble of optimal additive cluster-based fuzzy regression trees for software development effort prediction. We performed an empirical evaluation using four datasets and the 30% holdout cross-validation technique. We compared the performance of our proposed ensemble model to the c-fuzzy regression tree, the bagged c-fuzzy regression tree model, the ensemble of optimal trees, random forest, and regression trees. Our suggested model outperforms all the compared models in Pred (25%), MMRE, and MdMRE in all employed datasets.","PeriodicalId":345017,"journal":{"name":"2022 8th International Conference on Optimization and Applications (ICOA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Additive C-Fuzzy Regression Trees for Software Development Effort Prediction\",\"authors\":\"Assia Najm, A. Zakrani, A. Marzak\",\"doi\":\"10.1109/ICOA55659.2022.9934558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is evidence that precise prediction of the software development effort plays a crucial role in properly monitoring and managing software projects. Researchers have suggested many software effort estimation techniques. Nonetheless, none of these methods performed well in all circumstances. Ensemble models have been recently proposed in the literature to overcome the significant drawbacks of single machine learning approaches. In this study, we proposed a novel model, the ensemble of optimal additive cluster-based fuzzy regression trees for software development effort prediction. We performed an empirical evaluation using four datasets and the 30% holdout cross-validation technique. We compared the performance of our proposed ensemble model to the c-fuzzy regression tree, the bagged c-fuzzy regression tree model, the ensemble of optimal trees, random forest, and regression trees. Our suggested model outperforms all the compared models in Pred (25%), MMRE, and MdMRE in all employed datasets.\",\"PeriodicalId\":345017,\"journal\":{\"name\":\"2022 8th International Conference on Optimization and Applications (ICOA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 8th International Conference on Optimization and Applications (ICOA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOA55659.2022.9934558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA55659.2022.9934558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有证据表明,对软件开发工作的精确预测在适当地监视和管理软件项目中起着至关重要的作用。研究人员已经提出了许多软件工作量估算技术。然而,这些方法都不能在所有情况下都表现良好。最近,文献中提出了集成模型,以克服单一机器学习方法的显着缺点。在这项研究中,我们提出了一种新的模型,即基于最优加性聚类的模糊回归树的集合,用于软件开发工作量的预测。我们使用4个数据集和30%滞留交叉验证技术进行了实证评估。我们将我们提出的集成模型的性能与c-模糊回归树、袋装c-模糊回归树模型、最优树、随机森林和回归树的集成模型进行了比较。我们建议的模型在所有使用的数据集中优于Pred(25%)、MMRE和MdMRE的所有比较模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Additive C-Fuzzy Regression Trees for Software Development Effort Prediction
There is evidence that precise prediction of the software development effort plays a crucial role in properly monitoring and managing software projects. Researchers have suggested many software effort estimation techniques. Nonetheless, none of these methods performed well in all circumstances. Ensemble models have been recently proposed in the literature to overcome the significant drawbacks of single machine learning approaches. In this study, we proposed a novel model, the ensemble of optimal additive cluster-based fuzzy regression trees for software development effort prediction. We performed an empirical evaluation using four datasets and the 30% holdout cross-validation technique. We compared the performance of our proposed ensemble model to the c-fuzzy regression tree, the bagged c-fuzzy regression tree model, the ensemble of optimal trees, random forest, and regression trees. Our suggested model outperforms all the compared models in Pred (25%), MMRE, and MdMRE in all employed datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The importance of enterprise resource planning (ERP) in the optimisation of the small and medium enterprise's ressources in Morocco Nonsmooth Optimization for Synaptic Depression Dynamics 6G and V2X Communications: Applications, Features, and Challenges An Optimized Adaptive Learning Approach Based on Cuckoo Search Algorithm Waste solid management using Machine learning approch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1