双手互动的动觉知觉对称性:一项探索性研究

Ronak R. Mohanty, Riddhi R. Adhikari, Vinayak R. Krishnamurthy
{"title":"双手互动的动觉知觉对称性:一项探索性研究","authors":"Ronak R. Mohanty, Riddhi R. Adhikari, Vinayak R. Krishnamurthy","doi":"10.1115/detc2020-22723","DOIUrl":null,"url":null,"abstract":"\n In this paper, we present a study to explore the symmetry of kinesthetic perception. Our goal is to add to the growing literature that investigates haptics technologies for therapeutic and rehabilitative applications. To this end, we study how selective activation/ deactivation of haptic (specifically force) feedback affects human perception during symmetric bi-manual (two-handed) spatial tasks. We conducted a simple experiment where healthy individuals are tasked with stretching a virtual spring using two symmetrically located haptics devices that provide an equal amount of resistive forces on each hand while pulling the spring. In this experiment, we implement four kinesthetic conditions, namely (1) feedback on both hands, (2) feedback only on dominant hand, (3) feedback only on non-dominant hand, and (4) no feedback as our control. Our first goal was to determine if there exists a range of spring stiffness in which the individual incorrectly perceives bi-manual forces when the feedback is deactivated on one hand. Subsequently, we also wanted to investigate what range of spring stiffness would lead to such perceptual illusions. Our studies show that not only does such a range exist, wide enough so as to be potentially utilized in future rehabilitative applications. Interestingly, we also observe that for few cases, symmetry can be independent of the kinesthetic perception.","PeriodicalId":164403,"journal":{"name":"Volume 9: 40th Computers and Information in Engineering Conference (CIE)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Kinesthetic Perceptual Symmetry in Bi-Manual Interactions: An Exploratory Study\",\"authors\":\"Ronak R. Mohanty, Riddhi R. Adhikari, Vinayak R. Krishnamurthy\",\"doi\":\"10.1115/detc2020-22723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this paper, we present a study to explore the symmetry of kinesthetic perception. Our goal is to add to the growing literature that investigates haptics technologies for therapeutic and rehabilitative applications. To this end, we study how selective activation/ deactivation of haptic (specifically force) feedback affects human perception during symmetric bi-manual (two-handed) spatial tasks. We conducted a simple experiment where healthy individuals are tasked with stretching a virtual spring using two symmetrically located haptics devices that provide an equal amount of resistive forces on each hand while pulling the spring. In this experiment, we implement four kinesthetic conditions, namely (1) feedback on both hands, (2) feedback only on dominant hand, (3) feedback only on non-dominant hand, and (4) no feedback as our control. Our first goal was to determine if there exists a range of spring stiffness in which the individual incorrectly perceives bi-manual forces when the feedback is deactivated on one hand. Subsequently, we also wanted to investigate what range of spring stiffness would lead to such perceptual illusions. Our studies show that not only does such a range exist, wide enough so as to be potentially utilized in future rehabilitative applications. Interestingly, we also observe that for few cases, symmetry can be independent of the kinesthetic perception.\",\"PeriodicalId\":164403,\"journal\":{\"name\":\"Volume 9: 40th Computers and Information in Engineering Conference (CIE)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: 40th Computers and Information in Engineering Conference (CIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2020-22723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: 40th Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2020-22723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一项研究,探讨对称性的动觉知觉。我们的目标是增加研究触觉技术用于治疗和康复应用的文献。为此,我们研究了在对称的双手空间任务中,触觉(特别是力)反馈的选择性激活/失活如何影响人类的感知。我们进行了一个简单的实验,让健康的人使用两个对称位置的触觉设备拉伸虚拟弹簧,在拉动弹簧的同时,每只手上都提供等量的阻力。在本实验中,我们设置了四种动觉条件,即(1)双手反馈,(2)只对优势手进行反馈,(3)只对非优势手进行反馈,(4)没有反馈作为我们的对照。我们的第一个目标是确定是否存在一个弹簧刚度范围,在这个范围内,当一只手的反馈失效时,个人会错误地感知双手的力量。随后,我们还想研究弹簧刚度的哪个范围会导致这种感知错觉。我们的研究表明,这样的范围不仅存在,而且足够广泛,可以在未来的康复应用中得到潜在的利用。有趣的是,我们还观察到,在少数情况下,对称性可以独立于动觉知觉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kinesthetic Perceptual Symmetry in Bi-Manual Interactions: An Exploratory Study
In this paper, we present a study to explore the symmetry of kinesthetic perception. Our goal is to add to the growing literature that investigates haptics technologies for therapeutic and rehabilitative applications. To this end, we study how selective activation/ deactivation of haptic (specifically force) feedback affects human perception during symmetric bi-manual (two-handed) spatial tasks. We conducted a simple experiment where healthy individuals are tasked with stretching a virtual spring using two symmetrically located haptics devices that provide an equal amount of resistive forces on each hand while pulling the spring. In this experiment, we implement four kinesthetic conditions, namely (1) feedback on both hands, (2) feedback only on dominant hand, (3) feedback only on non-dominant hand, and (4) no feedback as our control. Our first goal was to determine if there exists a range of spring stiffness in which the individual incorrectly perceives bi-manual forces when the feedback is deactivated on one hand. Subsequently, we also wanted to investigate what range of spring stiffness would lead to such perceptual illusions. Our studies show that not only does such a range exist, wide enough so as to be potentially utilized in future rehabilitative applications. Interestingly, we also observe that for few cases, symmetry can be independent of the kinesthetic perception.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Analysis of Tensile Tests Performed on 316L Specimens Manufactured by Directed Energy Deposition Agent Based Resilient Transportation Infrastructure With Surrogate Adaptive Networks Medical Assessment Test of Extrapersonal Neglect Using Virtual Reality: A Preliminary Study Predictive Human-in-the-Loop Simulations for Assistive Exoskeletons Multi-Objective Implementation of Additive Manufacturing in Make-to-Stock Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1