深度图编码的多尺度循环模式匹配方法

Danilo B. Graziosi, Nuno M. M. Rodrigues, C. Pagliari, E. Silva, S. Faria, Marcelo M. Perez, M. Carvalho
{"title":"深度图编码的多尺度循环模式匹配方法","authors":"Danilo B. Graziosi, Nuno M. M. Rodrigues, C. Pagliari, E. Silva, S. Faria, Marcelo M. Perez, M. Carvalho","doi":"10.1109/PCS.2010.5702490","DOIUrl":null,"url":null,"abstract":"In this article we propose to compress depth maps using a coding scheme based on multiscale recurrent pattern matching and evaluate its impact on depth image based rendering (DIBR). Depth maps are usually converted into gray scale images and compressed like a conventional luminance signal. However, using traditional transform-based encoders to compress depth maps may result in undesired artifacts at sharp edges due to the quantization of high frequency coefficients. The Multidimensional Multiscale Parser (MMP) is a pattern matching-based encoder, that is able to preserve and efficiently encode high frequency patterns, such as edge information. This ability is critical for encoding depth map images. Experimental results for encoding depth maps show that MMP is much more efficient in a rate-distortion sense than standard image compression techniques such as JPEG2000 or H.264/AVC. In addition, the depth maps compressed with MMP generate reconstructed views with a higher quality than all other tested compression algorithms.","PeriodicalId":255142,"journal":{"name":"28th Picture Coding Symposium","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Multiscale recurrent pattern matching approach for depth map coding\",\"authors\":\"Danilo B. Graziosi, Nuno M. M. Rodrigues, C. Pagliari, E. Silva, S. Faria, Marcelo M. Perez, M. Carvalho\",\"doi\":\"10.1109/PCS.2010.5702490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we propose to compress depth maps using a coding scheme based on multiscale recurrent pattern matching and evaluate its impact on depth image based rendering (DIBR). Depth maps are usually converted into gray scale images and compressed like a conventional luminance signal. However, using traditional transform-based encoders to compress depth maps may result in undesired artifacts at sharp edges due to the quantization of high frequency coefficients. The Multidimensional Multiscale Parser (MMP) is a pattern matching-based encoder, that is able to preserve and efficiently encode high frequency patterns, such as edge information. This ability is critical for encoding depth map images. Experimental results for encoding depth maps show that MMP is much more efficient in a rate-distortion sense than standard image compression techniques such as JPEG2000 or H.264/AVC. In addition, the depth maps compressed with MMP generate reconstructed views with a higher quality than all other tested compression algorithms.\",\"PeriodicalId\":255142,\"journal\":{\"name\":\"28th Picture Coding Symposium\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"28th Picture Coding Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCS.2010.5702490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Picture Coding Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2010.5702490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们提出了一种基于多尺度循环模式匹配的深度图压缩编码方案,并评估了其对基于深度图像的渲染(DIBR)的影响。深度图通常被转换成灰度图像,并像传统的亮度信号一样被压缩。然而,使用传统的基于变换的编码器来压缩深度图,由于高频系数的量化,可能会在尖锐边缘产生不希望的伪影。多维多尺度解析器(MMP)是一种基于模式匹配的编码器,能够有效地保存和编码高频模式,如边缘信息。这种能力对于编码深度图图像至关重要。深度图编码的实验结果表明,在率失真意义上,MMP比标准图像压缩技术(如JPEG2000或H.264/AVC)要高效得多。此外,与所有其他经过测试的压缩算法相比,用MMP压缩的深度图生成的重建视图质量更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiscale recurrent pattern matching approach for depth map coding
In this article we propose to compress depth maps using a coding scheme based on multiscale recurrent pattern matching and evaluate its impact on depth image based rendering (DIBR). Depth maps are usually converted into gray scale images and compressed like a conventional luminance signal. However, using traditional transform-based encoders to compress depth maps may result in undesired artifacts at sharp edges due to the quantization of high frequency coefficients. The Multidimensional Multiscale Parser (MMP) is a pattern matching-based encoder, that is able to preserve and efficiently encode high frequency patterns, such as edge information. This ability is critical for encoding depth map images. Experimental results for encoding depth maps show that MMP is much more efficient in a rate-distortion sense than standard image compression techniques such as JPEG2000 or H.264/AVC. In addition, the depth maps compressed with MMP generate reconstructed views with a higher quality than all other tested compression algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Focus on visual rendering quality through content-based depth map coding Image quality assessment based on local orientation distributions Intra picture coding with planar representations Real-time Free Viewpoint Television for embedded systems A subjective image quality metric for bit-inversion-based watermarking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1