Liang Yuan, Qiang He, Siyu Tan, Bo Li, Jiangshan Yu, Feifei Chen, Hai Jin, Yun Yang
{"title":"CoopEdge:一个去中心化的基于区块链的协作边缘计算平台","authors":"Liang Yuan, Qiang He, Siyu Tan, Bo Li, Jiangshan Yu, Feifei Chen, Hai Jin, Yun Yang","doi":"10.1145/3442381.3449994","DOIUrl":null,"url":null,"abstract":"Edge computing (EC) has recently emerged as a novel computing paradigm that offers users low-latency services. Suffering from constrained computing resources due to their limited physical sizes, edge servers cannot always handle all the incoming computation tasks timely when they operate independently. They often need to cooperate through peer-offloading. Deployed and managed by different stakeholders, edge servers operate in a distrusted environment. Trust and incentive are the two main issues that challenge cooperative computing between them. Another unique challenge in the EC environment is to facilitate trust and incentive in a decentralized manner. To tackle these challenges systematically, this paper proposes CoopEdge, a novel blockchain-based decentralized platform, to drive and support cooperative edge computing. On CoopEdge, an edge server can publish a computation task for other edge servers to contend for. A winner is selected from candidate edge servers based on their reputations. After that, a consensus is reached among edge servers to record the performance in task execution on blockchain. We implement CoopEdge based on Hyperledger Sawtooth and evaluate it experimentally against a baseline and two state-of-the-art implementations in a simulated EC environment. The results validate the usefulness of CoopEdge and demonstrate its performance.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"CoopEdge: A Decentralized Blockchain-based Platform for Cooperative Edge Computing\",\"authors\":\"Liang Yuan, Qiang He, Siyu Tan, Bo Li, Jiangshan Yu, Feifei Chen, Hai Jin, Yun Yang\",\"doi\":\"10.1145/3442381.3449994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge computing (EC) has recently emerged as a novel computing paradigm that offers users low-latency services. Suffering from constrained computing resources due to their limited physical sizes, edge servers cannot always handle all the incoming computation tasks timely when they operate independently. They often need to cooperate through peer-offloading. Deployed and managed by different stakeholders, edge servers operate in a distrusted environment. Trust and incentive are the two main issues that challenge cooperative computing between them. Another unique challenge in the EC environment is to facilitate trust and incentive in a decentralized manner. To tackle these challenges systematically, this paper proposes CoopEdge, a novel blockchain-based decentralized platform, to drive and support cooperative edge computing. On CoopEdge, an edge server can publish a computation task for other edge servers to contend for. A winner is selected from candidate edge servers based on their reputations. After that, a consensus is reached among edge servers to record the performance in task execution on blockchain. We implement CoopEdge based on Hyperledger Sawtooth and evaluate it experimentally against a baseline and two state-of-the-art implementations in a simulated EC environment. The results validate the usefulness of CoopEdge and demonstrate its performance.\",\"PeriodicalId\":106672,\"journal\":{\"name\":\"Proceedings of the Web Conference 2021\",\"volume\":\"135 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Web Conference 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3442381.3449994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442381.3449994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CoopEdge: A Decentralized Blockchain-based Platform for Cooperative Edge Computing
Edge computing (EC) has recently emerged as a novel computing paradigm that offers users low-latency services. Suffering from constrained computing resources due to their limited physical sizes, edge servers cannot always handle all the incoming computation tasks timely when they operate independently. They often need to cooperate through peer-offloading. Deployed and managed by different stakeholders, edge servers operate in a distrusted environment. Trust and incentive are the two main issues that challenge cooperative computing between them. Another unique challenge in the EC environment is to facilitate trust and incentive in a decentralized manner. To tackle these challenges systematically, this paper proposes CoopEdge, a novel blockchain-based decentralized platform, to drive and support cooperative edge computing. On CoopEdge, an edge server can publish a computation task for other edge servers to contend for. A winner is selected from candidate edge servers based on their reputations. After that, a consensus is reached among edge servers to record the performance in task execution on blockchain. We implement CoopEdge based on Hyperledger Sawtooth and evaluate it experimentally against a baseline and two state-of-the-art implementations in a simulated EC environment. The results validate the usefulness of CoopEdge and demonstrate its performance.