{"title":"尝试用IBAD在低温下制备钙钛矿PZT","authors":"David Vápenka, J. Hlubuček, P. Horodyska","doi":"10.1117/12.2257328","DOIUrl":null,"url":null,"abstract":"Lead zirconate titanate (Pb[ZrxTi1-x]O3 ) is well-known for his excellent ferroelectric, piezoelectric and electromechanical properties. These properties are closely related to the perovskite crystal structure of PZT. A common way to achieve thin film of perovskite PZT is to anneal the layer after deposition. The high annealing temperature (600 – 700°C) limits a set of usable substrates. To grow a thin layer of perovskite PZT at reduced temperature it is necessary to add crystallization energy to the system by another way. In this article are presented some results of using ion beam sputtering system (IBS) with ion beam assistance (IBAD) to growth perovskite PZT layer at reduced temperature. This process is very complicated and the resulting layer properties are strongly influenced by deposition parameters (ions energy, chemical composition of the atmosphere in the sputtering chamber etc.). We achieved partial success when pyrochlore crystal structure of PZT was grown at reduced substrate temperature (110°C) (at this temperatures are the PZT layers usually amorphous)","PeriodicalId":112965,"journal":{"name":"Optical Angular Momentum","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Attempt to prepare perovskite PZT at low temperatures using IBAD\",\"authors\":\"David Vápenka, J. Hlubuček, P. Horodyska\",\"doi\":\"10.1117/12.2257328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lead zirconate titanate (Pb[ZrxTi1-x]O3 ) is well-known for his excellent ferroelectric, piezoelectric and electromechanical properties. These properties are closely related to the perovskite crystal structure of PZT. A common way to achieve thin film of perovskite PZT is to anneal the layer after deposition. The high annealing temperature (600 – 700°C) limits a set of usable substrates. To grow a thin layer of perovskite PZT at reduced temperature it is necessary to add crystallization energy to the system by another way. In this article are presented some results of using ion beam sputtering system (IBS) with ion beam assistance (IBAD) to growth perovskite PZT layer at reduced temperature. This process is very complicated and the resulting layer properties are strongly influenced by deposition parameters (ions energy, chemical composition of the atmosphere in the sputtering chamber etc.). We achieved partial success when pyrochlore crystal structure of PZT was grown at reduced substrate temperature (110°C) (at this temperatures are the PZT layers usually amorphous)\",\"PeriodicalId\":112965,\"journal\":{\"name\":\"Optical Angular Momentum\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Angular Momentum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2257328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Angular Momentum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2257328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Attempt to prepare perovskite PZT at low temperatures using IBAD
Lead zirconate titanate (Pb[ZrxTi1-x]O3 ) is well-known for his excellent ferroelectric, piezoelectric and electromechanical properties. These properties are closely related to the perovskite crystal structure of PZT. A common way to achieve thin film of perovskite PZT is to anneal the layer after deposition. The high annealing temperature (600 – 700°C) limits a set of usable substrates. To grow a thin layer of perovskite PZT at reduced temperature it is necessary to add crystallization energy to the system by another way. In this article are presented some results of using ion beam sputtering system (IBS) with ion beam assistance (IBAD) to growth perovskite PZT layer at reduced temperature. This process is very complicated and the resulting layer properties are strongly influenced by deposition parameters (ions energy, chemical composition of the atmosphere in the sputtering chamber etc.). We achieved partial success when pyrochlore crystal structure of PZT was grown at reduced substrate temperature (110°C) (at this temperatures are the PZT layers usually amorphous)