基于心跳差分类和带自适应唤醒的事件驱动神经网络计算的高能效心律失常分类处理器

J. Liu, J. Xiao, J. Fan, Q. Liu, Z. Zhu, S. Li, Z. Zhang, S. Yang, W. Shan, S. Lin, L. Chang, L. Zhou, J. Zhou
{"title":"基于心跳差分类和带自适应唤醒的事件驱动神经网络计算的高能效心律失常分类处理器","authors":"J. Liu, J. Xiao, J. Fan, Q. Liu, Z. Zhu, S. Li, Z. Zhang, S. Yang, W. Shan, S. Lin, L. Chang, L. Zhou, J. Zhou","doi":"10.1109/CICC53496.2022.9772795","DOIUrl":null,"url":null,"abstract":"Wearable intelligent ECG sensors integrating cardiac arrhythmia classification processor have been used to detect and classify arrhythmia to alert users for potential cardiovascular diseases [1] [2]. The state-of-the-art arrhythmia classification processors using neural network (NN) can achieve high accuracy, but the high complexity of NN computation brings significant energy consumption. Another challenge is that the accuracy of the NN is affected by the patient-to-patient variation, leading to accuracy degradation when applying a trained NN to the patients whose ECG features differ from that in the training database. To address the above issues, in this work, we proposed an arrhythmia classification processor using heartbeat difference encoding and event-driven NN to achieve high energy efficiency and high accuracy against patient-to-patient variation. The main features of the proposed processor include a) heartbeat difference based classification to improve the accuracy under the patient-to-patient variation and reduce the energy consumption. b) event-driven NN computation with shared feature extraction to reduce the energy consumption. c) adaptive NN wake-up technique to reduce the energy consumption while maintaining accuracy.","PeriodicalId":415990,"journal":{"name":"2022 IEEE Custom Integrated Circuits Conference (CICC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Energy-Efficient Cardiac Arrhythmia Classification Processor using Heartbeat Difference based Classification and Event-Driven Neural Network Computation with Adaptive Wake-Up\",\"authors\":\"J. Liu, J. Xiao, J. Fan, Q. Liu, Z. Zhu, S. Li, Z. Zhang, S. Yang, W. Shan, S. Lin, L. Chang, L. Zhou, J. Zhou\",\"doi\":\"10.1109/CICC53496.2022.9772795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wearable intelligent ECG sensors integrating cardiac arrhythmia classification processor have been used to detect and classify arrhythmia to alert users for potential cardiovascular diseases [1] [2]. The state-of-the-art arrhythmia classification processors using neural network (NN) can achieve high accuracy, but the high complexity of NN computation brings significant energy consumption. Another challenge is that the accuracy of the NN is affected by the patient-to-patient variation, leading to accuracy degradation when applying a trained NN to the patients whose ECG features differ from that in the training database. To address the above issues, in this work, we proposed an arrhythmia classification processor using heartbeat difference encoding and event-driven NN to achieve high energy efficiency and high accuracy against patient-to-patient variation. The main features of the proposed processor include a) heartbeat difference based classification to improve the accuracy under the patient-to-patient variation and reduce the energy consumption. b) event-driven NN computation with shared feature extraction to reduce the energy consumption. c) adaptive NN wake-up technique to reduce the energy consumption while maintaining accuracy.\",\"PeriodicalId\":415990,\"journal\":{\"name\":\"2022 IEEE Custom Integrated Circuits Conference (CICC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Custom Integrated Circuits Conference (CICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICC53496.2022.9772795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC53496.2022.9772795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

集成心律失常分类处理器的可穿戴智能心电传感器已被用于检测和分类心律失常,以提醒用户注意潜在的心血管疾病[1][2]。目前使用神经网络的心律失常分类处理器可以达到较高的准确率,但神经网络计算的高复杂度带来了巨大的能量消耗。另一个挑战是,神经网络的准确性受到患者之间差异的影响,当将训练好的神经网络应用于ECG特征与训练数据库中不同的患者时,会导致准确性下降。为了解决上述问题,在这项工作中,我们提出了一种使用心跳差异编码和事件驱动神经网络的心律失常分类处理器,以实现针对患者差异的高能效和高精度。该处理器的主要特点包括:a)基于心跳差异的分类,提高了患者间差异下的准确率,降低了能耗;b)基于共享特征提取的事件驱动神经网络计算,降低能耗。c)自适应神经网络唤醒技术,在保持精度的同时降低能量消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Energy-Efficient Cardiac Arrhythmia Classification Processor using Heartbeat Difference based Classification and Event-Driven Neural Network Computation with Adaptive Wake-Up
Wearable intelligent ECG sensors integrating cardiac arrhythmia classification processor have been used to detect and classify arrhythmia to alert users for potential cardiovascular diseases [1] [2]. The state-of-the-art arrhythmia classification processors using neural network (NN) can achieve high accuracy, but the high complexity of NN computation brings significant energy consumption. Another challenge is that the accuracy of the NN is affected by the patient-to-patient variation, leading to accuracy degradation when applying a trained NN to the patients whose ECG features differ from that in the training database. To address the above issues, in this work, we proposed an arrhythmia classification processor using heartbeat difference encoding and event-driven NN to achieve high energy efficiency and high accuracy against patient-to-patient variation. The main features of the proposed processor include a) heartbeat difference based classification to improve the accuracy under the patient-to-patient variation and reduce the energy consumption. b) event-driven NN computation with shared feature extraction to reduce the energy consumption. c) adaptive NN wake-up technique to reduce the energy consumption while maintaining accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
All Rivers Flow to the Sea: A High Power Density Wireless Power Receiver with Split-Dual-Path Rectification and Hybrid-Quad-Path Step-Down Conversion A 400-to-12 V Fully Integrated Switched-Capacitor DC-DC Converter Achieving 119 mW/mm2 at 63.6 % Efficiency A 0.14nJ/b 200Mb/s Quasi-Balanced FSK Transceiver with Closed-Loop Modulation and Sideband Energy Detection A 2GHz voltage mode power scalable RF-Front-End with 2.5dB-NF and 0.5dBm-1dBCP High-Speed Digital-to-Analog Converter Design Towards High Dynamic Range
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1