研究空化带与相界面的相互作用,确定物理-化学过程的超声强化有效模式

V. Khmelev, R. Golykh, A. V. Shalunova, V. Nesterov, E. V. Ilchenko
{"title":"研究空化带与相界面的相互作用,确定物理-化学过程的超声强化有效模式","authors":"V. Khmelev, R. Golykh, A. V. Shalunova, V. Nesterov, E. V. Ilchenko","doi":"10.1109/EDM.2015.7184538","DOIUrl":null,"url":null,"abstract":"The article describes the model of the interaction of cavitation zone formed under the action of ultrasonic vibrations and interphase boundary of gas and liquid media, which spreads on solid surface in the form of liquid layer. It is shown that this interaction leads to the generation of capillary waves and consequently to the increase of efficiency of physical-chemical processes due to enlarged “liquid-gas” boundary. The analysis of the model allows determining square of interphase surface in dependence on amplitude, frequency of ultrasonic oscillations and liquid properties. It allows to determine the modes of ultrasonic action, which is necessary for maximum increase of contact surface area, in turn it leads to the growth of speed of the realization of physical-chemical processes based on surface interaction of dissimilar substances. As a result of the analysis it was determined that the most appropriate frequency of ultrasonic action is 60 kHz, at which increase of contact surface from 200 to 780 m2/m3 (at 5 mm thickness of liquid flm) can be achieved.","PeriodicalId":213801,"journal":{"name":"2015 16th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices","volume":"779 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Study of interaction of cavitation zone with interphase boundary for the determination of efficient modes of ultrasonic intensification of physical-chemical processes\",\"authors\":\"V. Khmelev, R. Golykh, A. V. Shalunova, V. Nesterov, E. V. Ilchenko\",\"doi\":\"10.1109/EDM.2015.7184538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article describes the model of the interaction of cavitation zone formed under the action of ultrasonic vibrations and interphase boundary of gas and liquid media, which spreads on solid surface in the form of liquid layer. It is shown that this interaction leads to the generation of capillary waves and consequently to the increase of efficiency of physical-chemical processes due to enlarged “liquid-gas” boundary. The analysis of the model allows determining square of interphase surface in dependence on amplitude, frequency of ultrasonic oscillations and liquid properties. It allows to determine the modes of ultrasonic action, which is necessary for maximum increase of contact surface area, in turn it leads to the growth of speed of the realization of physical-chemical processes based on surface interaction of dissimilar substances. As a result of the analysis it was determined that the most appropriate frequency of ultrasonic action is 60 kHz, at which increase of contact surface from 200 to 780 m2/m3 (at 5 mm thickness of liquid flm) can be achieved.\",\"PeriodicalId\":213801,\"journal\":{\"name\":\"2015 16th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices\",\"volume\":\"779 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 16th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDM.2015.7184538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 16th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDM.2015.7184538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文描述了超声振动作用下形成的空化带与气液介质相界面相互作用的模型,并以液层的形式在固体表面扩散。结果表明,这种相互作用导致毛细波的产生,从而由于“液气”边界的扩大而提高了物理化学过程的效率。通过对模型的分析,可以根据超声振荡的幅度、频率和液体性质确定相界面的平方。它允许确定超声作用的模式,这是最大限度地增加接触表面积所必需的,反过来,它导致基于不同物质表面相互作用的物理化学过程实现速度的增长。分析结果表明,超声作用的最适宜频率为60 kHz,在此频率下(液膜厚度为5 mm时)接触面可由200 m2/m3增加到780 m2/m3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of interaction of cavitation zone with interphase boundary for the determination of efficient modes of ultrasonic intensification of physical-chemical processes
The article describes the model of the interaction of cavitation zone formed under the action of ultrasonic vibrations and interphase boundary of gas and liquid media, which spreads on solid surface in the form of liquid layer. It is shown that this interaction leads to the generation of capillary waves and consequently to the increase of efficiency of physical-chemical processes due to enlarged “liquid-gas” boundary. The analysis of the model allows determining square of interphase surface in dependence on amplitude, frequency of ultrasonic oscillations and liquid properties. It allows to determine the modes of ultrasonic action, which is necessary for maximum increase of contact surface area, in turn it leads to the growth of speed of the realization of physical-chemical processes based on surface interaction of dissimilar substances. As a result of the analysis it was determined that the most appropriate frequency of ultrasonic action is 60 kHz, at which increase of contact surface from 200 to 780 m2/m3 (at 5 mm thickness of liquid flm) can be achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two-dimensional simulation of the silicon nanowires thinning effect during the thermal oxidation The universal control system for semiconductor converters with PWM Self-organized low density SiGe quantum dot molecules The use of converse ultrasonic capillary effect for the extraction of wound contents from capillary-porous human tissue Error correction codes with approximation the border of shannon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1