{"title":"基于机器学习的心脏病预测比较研究","authors":"Merve Güllü, M. Ali Akcayol, N. Barışçı","doi":"10.54569/aair.1145616","DOIUrl":null,"url":null,"abstract":"Heart disease is one of the most common causes of death globally. In this study, machine learning algorithms and models widely used in the literature to predict heart disease have been extensively compared, and a hybrid feature selection based on genetic algorithm and tabu search methods have been developed. The proposed system consists of three components: (1) preprocess of datasets, (2) feature selection with genetic and tabu search algorithm, and (3) classification module. The models have been tested using different datasets, and detailed comparisons and analysis were presented. The experimental results show that the Random Forest algorithm is more successful than Adaboost, Bagging, Logitboost, and Support Vector machine using Cleveland and Statlog datasets.","PeriodicalId":286492,"journal":{"name":"Advances in Artificial Intelligence Research","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machine Learning-Based Comparative Study For Heart Disease Prediction\",\"authors\":\"Merve Güllü, M. Ali Akcayol, N. Barışçı\",\"doi\":\"10.54569/aair.1145616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Heart disease is one of the most common causes of death globally. In this study, machine learning algorithms and models widely used in the literature to predict heart disease have been extensively compared, and a hybrid feature selection based on genetic algorithm and tabu search methods have been developed. The proposed system consists of three components: (1) preprocess of datasets, (2) feature selection with genetic and tabu search algorithm, and (3) classification module. The models have been tested using different datasets, and detailed comparisons and analysis were presented. The experimental results show that the Random Forest algorithm is more successful than Adaboost, Bagging, Logitboost, and Support Vector machine using Cleveland and Statlog datasets.\",\"PeriodicalId\":286492,\"journal\":{\"name\":\"Advances in Artificial Intelligence Research\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Artificial Intelligence Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54569/aair.1145616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Artificial Intelligence Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54569/aair.1145616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine Learning-Based Comparative Study For Heart Disease Prediction
Heart disease is one of the most common causes of death globally. In this study, machine learning algorithms and models widely used in the literature to predict heart disease have been extensively compared, and a hybrid feature selection based on genetic algorithm and tabu search methods have been developed. The proposed system consists of three components: (1) preprocess of datasets, (2) feature selection with genetic and tabu search algorithm, and (3) classification module. The models have been tested using different datasets, and detailed comparisons and analysis were presented. The experimental results show that the Random Forest algorithm is more successful than Adaboost, Bagging, Logitboost, and Support Vector machine using Cleveland and Statlog datasets.