{"title":"由分环谐振器阵列组成的多波段印刷天线","authors":"A. Munir, Jumail Soba","doi":"10.1109/EURAD.2015.7346318","DOIUrl":null,"url":null,"abstract":"In this paper, an approach to implement an array of split ring resonators (SRR) as a part of antenna structure is presented for exciting multiband property of a single-band microstrip patch antenna. The proposed antenna is intended to satisfy the demand of compact device with unique features for wireless communication systems. The antenna is designed on FR4 Epoxy dielectric substrates with the dimension of 78.6mm × 48.4mm and total thickness of 1.6mm. To demonstrate the multiband property, a conventional microstrip patch antenna is simultaneously designed on the same dielectric substrate and physical parameters to be compared with the proposed antenna. From the experimental characterization, it shows that the proposed antenna has 3 resonant frequencies in the range of 1-3GHz. The first resonant frequency is 1.47GHz with working bandwidth of 336MHz which is comparable to the design one with resonant frequency of 1.55GHz and working bandwidth of 330MHz. Whilst the second and third resonant frequencies are 2.43GHz with working bandwidth of 61MHz and 2.86GHz with working bandwidth of 179MHz, respectively.","PeriodicalId":376019,"journal":{"name":"2015 European Radar Conference (EuRAD)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Multiband printed antenna composed of an array of split ring resonators\",\"authors\":\"A. Munir, Jumail Soba\",\"doi\":\"10.1109/EURAD.2015.7346318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an approach to implement an array of split ring resonators (SRR) as a part of antenna structure is presented for exciting multiband property of a single-band microstrip patch antenna. The proposed antenna is intended to satisfy the demand of compact device with unique features for wireless communication systems. The antenna is designed on FR4 Epoxy dielectric substrates with the dimension of 78.6mm × 48.4mm and total thickness of 1.6mm. To demonstrate the multiband property, a conventional microstrip patch antenna is simultaneously designed on the same dielectric substrate and physical parameters to be compared with the proposed antenna. From the experimental characterization, it shows that the proposed antenna has 3 resonant frequencies in the range of 1-3GHz. The first resonant frequency is 1.47GHz with working bandwidth of 336MHz which is comparable to the design one with resonant frequency of 1.55GHz and working bandwidth of 330MHz. Whilst the second and third resonant frequencies are 2.43GHz with working bandwidth of 61MHz and 2.86GHz with working bandwidth of 179MHz, respectively.\",\"PeriodicalId\":376019,\"journal\":{\"name\":\"2015 European Radar Conference (EuRAD)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 European Radar Conference (EuRAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EURAD.2015.7346318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 European Radar Conference (EuRAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURAD.2015.7346318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiband printed antenna composed of an array of split ring resonators
In this paper, an approach to implement an array of split ring resonators (SRR) as a part of antenna structure is presented for exciting multiband property of a single-band microstrip patch antenna. The proposed antenna is intended to satisfy the demand of compact device with unique features for wireless communication systems. The antenna is designed on FR4 Epoxy dielectric substrates with the dimension of 78.6mm × 48.4mm and total thickness of 1.6mm. To demonstrate the multiband property, a conventional microstrip patch antenna is simultaneously designed on the same dielectric substrate and physical parameters to be compared with the proposed antenna. From the experimental characterization, it shows that the proposed antenna has 3 resonant frequencies in the range of 1-3GHz. The first resonant frequency is 1.47GHz with working bandwidth of 336MHz which is comparable to the design one with resonant frequency of 1.55GHz and working bandwidth of 330MHz. Whilst the second and third resonant frequencies are 2.43GHz with working bandwidth of 61MHz and 2.86GHz with working bandwidth of 179MHz, respectively.