{"title":"通过嵌套分解求解线性系统","authors":"N. Alon, R. Yuster","doi":"10.1109/FOCS.2010.28","DOIUrl":null,"url":null,"abstract":"The generalized nested dissection method, developed by Lipton, Rose, and Tarjan, is a seminal method for solving a linear system Ax=b where A is a symmetric positive definite matrix. The method runs extremely fast whenever A is a well-separable matrix (such as matrices whose underlying support is planar or avoids a fixed minor). In this work we extend the nested dissection method to apply to any non-singular well-separable matrix over any field. The running times we obtain essentially match those of the nested dissection method.","PeriodicalId":228365,"journal":{"name":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Solving Linear Systems through Nested Dissection\",\"authors\":\"N. Alon, R. Yuster\",\"doi\":\"10.1109/FOCS.2010.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generalized nested dissection method, developed by Lipton, Rose, and Tarjan, is a seminal method for solving a linear system Ax=b where A is a symmetric positive definite matrix. The method runs extremely fast whenever A is a well-separable matrix (such as matrices whose underlying support is planar or avoids a fixed minor). In this work we extend the nested dissection method to apply to any non-singular well-separable matrix over any field. The running times we obtain essentially match those of the nested dissection method.\",\"PeriodicalId\":228365,\"journal\":{\"name\":\"2010 IEEE 51st Annual Symposium on Foundations of Computer Science\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 51st Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2010.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2010.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The generalized nested dissection method, developed by Lipton, Rose, and Tarjan, is a seminal method for solving a linear system Ax=b where A is a symmetric positive definite matrix. The method runs extremely fast whenever A is a well-separable matrix (such as matrices whose underlying support is planar or avoids a fixed minor). In this work we extend the nested dissection method to apply to any non-singular well-separable matrix over any field. The running times we obtain essentially match those of the nested dissection method.