超越字串的语言模型

E. Noth, A. Batliner, H. Niemann, G. Stemmer, F. Gallwitz, J. Spilker
{"title":"超越字串的语言模型","authors":"E. Noth, A. Batliner, H. Niemann, G. Stemmer, F. Gallwitz, J. Spilker","doi":"10.1109/ASRU.2001.1034614","DOIUrl":null,"url":null,"abstract":"In this paper we want to show how n-gram language models can be used to provide additional information in automatic speech understanding systems beyond the pure word chain. This becomes important in the context of conversational dialogue systems that have to recognize and interpret spontaneous speech. We show how n-grams can: (1) help to classify prosodic events like boundaries and accents; (2) be extended to directly provide boundary information in the speech recognition phase; (3) help to process speech repairs; and (4) detect and semantically classify out-of-vocabulary words. The approaches can work on the best word chain or a word hypotheses graph. Examples and experimental results are provided from our own research within the EVAR information retrieval system and the VERBMOBIL speech-to-speech translation system.","PeriodicalId":118671,"journal":{"name":"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Language models beyond word strings\",\"authors\":\"E. Noth, A. Batliner, H. Niemann, G. Stemmer, F. Gallwitz, J. Spilker\",\"doi\":\"10.1109/ASRU.2001.1034614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we want to show how n-gram language models can be used to provide additional information in automatic speech understanding systems beyond the pure word chain. This becomes important in the context of conversational dialogue systems that have to recognize and interpret spontaneous speech. We show how n-grams can: (1) help to classify prosodic events like boundaries and accents; (2) be extended to directly provide boundary information in the speech recognition phase; (3) help to process speech repairs; and (4) detect and semantically classify out-of-vocabulary words. The approaches can work on the best word chain or a word hypotheses graph. Examples and experimental results are provided from our own research within the EVAR information retrieval system and the VERBMOBIL speech-to-speech translation system.\",\"PeriodicalId\":118671,\"journal\":{\"name\":\"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2001.1034614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2001.1034614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们想展示n-gram语言模型如何在自动语音理解系统中提供纯词链之外的附加信息。这在必须识别和解释自发言语的会话对话系统中变得非常重要。我们展示了n-gram如何:(1)帮助分类韵律事件,如边界和重音;(2)扩展到在语音识别阶段直接提供边界信息;(3)帮助处理言语修复;(4)对词汇外词进行检测和语义分类。这些方法可以在最佳词链或词假设图上工作。给出了我们在EVAR信息检索系统和ververmobil语音对语音翻译系统中的研究实例和实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Language models beyond word strings
In this paper we want to show how n-gram language models can be used to provide additional information in automatic speech understanding systems beyond the pure word chain. This becomes important in the context of conversational dialogue systems that have to recognize and interpret spontaneous speech. We show how n-grams can: (1) help to classify prosodic events like boundaries and accents; (2) be extended to directly provide boundary information in the speech recognition phase; (3) help to process speech repairs; and (4) detect and semantically classify out-of-vocabulary words. The approaches can work on the best word chain or a word hypotheses graph. Examples and experimental results are provided from our own research within the EVAR information retrieval system and the VERBMOBIL speech-to-speech translation system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Example-based query generation for spontaneous speech Multilingual acoustic models for the recognition of non-native speech A comparative study of model-based adaptation techniques for a compact speech recognizer Trend tying in the segmental-feature HMM Estimated rank pruning and Java-based speech recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1