L. Codecasa, V. d’Alessandro, A. Magnani, N. Rinaldi
{"title":"用参数化动态紧凑热模型标定详细热模型","authors":"L. Codecasa, V. d’Alessandro, A. Magnani, N. Rinaldi","doi":"10.1109/THERMINIC.2016.7748650","DOIUrl":null,"url":null,"abstract":"In this paper it is shown how parametric dynamic compact thermal models can be exploited for the calibration of detailed thermal models of electronic components and packages. A constrained least square fit of the thermal response of a parametric dynamic compact thermal model, having as parameters the material thermal properties and geometrical details to be calibrated, onto the measured temperature response is performed. Numerical results show that the use of parametric dynamic compact thermal models instead of detailed compact thermal models, in conjunction with an optimization algorithm solving the constrained least square problem, can reduce the computational time for calibration by more than two orders of magnitude.","PeriodicalId":143150,"journal":{"name":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Calibration of detailed thermal models by parametric dynamic compact thermal models\",\"authors\":\"L. Codecasa, V. d’Alessandro, A. Magnani, N. Rinaldi\",\"doi\":\"10.1109/THERMINIC.2016.7748650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper it is shown how parametric dynamic compact thermal models can be exploited for the calibration of detailed thermal models of electronic components and packages. A constrained least square fit of the thermal response of a parametric dynamic compact thermal model, having as parameters the material thermal properties and geometrical details to be calibrated, onto the measured temperature response is performed. Numerical results show that the use of parametric dynamic compact thermal models instead of detailed compact thermal models, in conjunction with an optimization algorithm solving the constrained least square problem, can reduce the computational time for calibration by more than two orders of magnitude.\",\"PeriodicalId\":143150,\"journal\":{\"name\":\"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/THERMINIC.2016.7748650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THERMINIC.2016.7748650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Calibration of detailed thermal models by parametric dynamic compact thermal models
In this paper it is shown how parametric dynamic compact thermal models can be exploited for the calibration of detailed thermal models of electronic components and packages. A constrained least square fit of the thermal response of a parametric dynamic compact thermal model, having as parameters the material thermal properties and geometrical details to be calibrated, onto the measured temperature response is performed. Numerical results show that the use of parametric dynamic compact thermal models instead of detailed compact thermal models, in conjunction with an optimization algorithm solving the constrained least square problem, can reduce the computational time for calibration by more than two orders of magnitude.