Smiljana Tomasevic, I. Šaveljić, L. Velicki, N. Filipovic
{"title":"带二尖瓣主动脉根部的计算有限元分析","authors":"Smiljana Tomasevic, I. Šaveljić, L. Velicki, N. Filipovic","doi":"10.1109/BIBE52308.2021.9635269","DOIUrl":null,"url":null,"abstract":"The aim of this work was to evaluate the impact of Bicuspid Aortic Valve (BAV), on displacements, Von Mises stress, shear stress and pressure distribution within the aortic root by using computational Finite Element (FE) method. The three-dimensional (3D) patient-specific geometry of dilated aortic root with BAV was reconstructed based on Computed Tomography (CT) scan images, in order to obtain the 3D finite element mesh. Two types of analyses: i) structural analysis and ii) computational fluid dynamics (CFD) were performed, with applied equivalent material characteristics of BAV and boundary conditions. The initial results for this single case, displacements and Von Mises stress distribution (for structural analysis), as well as shear stress and pressure distribution (for CFD analysis) were quantified concerning anatomical patient's structures. The regions of abnormal stresses on the aortic leaflets and annulus, with asymmetrically open bicuspid valve, were related to the increased pressures and shear stresses and analyzed for this patient-specific case. Due to the difficulties in obtaining such characteristics in vitro or in vivo, the performed computational analysis gave better insight into the biomechanics of the aortic root with BAV that is needed to achieve improvements in surgical repair techniques and presurgical planning.","PeriodicalId":343724,"journal":{"name":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"95 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Finite Element Analysis of Aortic Root with Bicuspid Valve\",\"authors\":\"Smiljana Tomasevic, I. Šaveljić, L. Velicki, N. Filipovic\",\"doi\":\"10.1109/BIBE52308.2021.9635269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work was to evaluate the impact of Bicuspid Aortic Valve (BAV), on displacements, Von Mises stress, shear stress and pressure distribution within the aortic root by using computational Finite Element (FE) method. The three-dimensional (3D) patient-specific geometry of dilated aortic root with BAV was reconstructed based on Computed Tomography (CT) scan images, in order to obtain the 3D finite element mesh. Two types of analyses: i) structural analysis and ii) computational fluid dynamics (CFD) were performed, with applied equivalent material characteristics of BAV and boundary conditions. The initial results for this single case, displacements and Von Mises stress distribution (for structural analysis), as well as shear stress and pressure distribution (for CFD analysis) were quantified concerning anatomical patient's structures. The regions of abnormal stresses on the aortic leaflets and annulus, with asymmetrically open bicuspid valve, were related to the increased pressures and shear stresses and analyzed for this patient-specific case. Due to the difficulties in obtaining such characteristics in vitro or in vivo, the performed computational analysis gave better insight into the biomechanics of the aortic root with BAV that is needed to achieve improvements in surgical repair techniques and presurgical planning.\",\"PeriodicalId\":343724,\"journal\":{\"name\":\"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"95 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE52308.2021.9635269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE52308.2021.9635269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Computational Finite Element Analysis of Aortic Root with Bicuspid Valve
The aim of this work was to evaluate the impact of Bicuspid Aortic Valve (BAV), on displacements, Von Mises stress, shear stress and pressure distribution within the aortic root by using computational Finite Element (FE) method. The three-dimensional (3D) patient-specific geometry of dilated aortic root with BAV was reconstructed based on Computed Tomography (CT) scan images, in order to obtain the 3D finite element mesh. Two types of analyses: i) structural analysis and ii) computational fluid dynamics (CFD) were performed, with applied equivalent material characteristics of BAV and boundary conditions. The initial results for this single case, displacements and Von Mises stress distribution (for structural analysis), as well as shear stress and pressure distribution (for CFD analysis) were quantified concerning anatomical patient's structures. The regions of abnormal stresses on the aortic leaflets and annulus, with asymmetrically open bicuspid valve, were related to the increased pressures and shear stresses and analyzed for this patient-specific case. Due to the difficulties in obtaining such characteristics in vitro or in vivo, the performed computational analysis gave better insight into the biomechanics of the aortic root with BAV that is needed to achieve improvements in surgical repair techniques and presurgical planning.