S. Shekhar, Chang-Tien Lu, Pusheng Zhang, Rulin Liu
{"title":"大空间数据集选择性可视化的数据挖掘","authors":"S. Shekhar, Chang-Tien Lu, Pusheng Zhang, Rulin Liu","doi":"10.1109/TAI.2002.1180786","DOIUrl":null,"url":null,"abstract":"Data mining is the process of extracting implicit, valuable, and interesting information from large sets of data. Visualization is the process of visually exploring data for pattern and trend analysis, and it is a common method of browsing spatial datasets to look for patterns. However the growing volume of spatial datasets make it difficult for humans to browse such datasets in their entirety, and data mining algorithms are needed to filter out large uninteresting parts of spatial datasets. We construct a web-based visualization software package for observing the summarization of spatial patterns and temporal trends. We also present data mining algorithms for filtering out vast parts of datasets for spatial outlier patterns. The algorithms were implemented and tested with a real-world set of Minneapolis-St. Paul (Twin Cities) traffic data.","PeriodicalId":197064,"journal":{"name":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Data mining for selective visualization of large spatial datasets\",\"authors\":\"S. Shekhar, Chang-Tien Lu, Pusheng Zhang, Rulin Liu\",\"doi\":\"10.1109/TAI.2002.1180786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data mining is the process of extracting implicit, valuable, and interesting information from large sets of data. Visualization is the process of visually exploring data for pattern and trend analysis, and it is a common method of browsing spatial datasets to look for patterns. However the growing volume of spatial datasets make it difficult for humans to browse such datasets in their entirety, and data mining algorithms are needed to filter out large uninteresting parts of spatial datasets. We construct a web-based visualization software package for observing the summarization of spatial patterns and temporal trends. We also present data mining algorithms for filtering out vast parts of datasets for spatial outlier patterns. The algorithms were implemented and tested with a real-world set of Minneapolis-St. Paul (Twin Cities) traffic data.\",\"PeriodicalId\":197064,\"journal\":{\"name\":\"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.2002.1180786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.2002.1180786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data mining for selective visualization of large spatial datasets
Data mining is the process of extracting implicit, valuable, and interesting information from large sets of data. Visualization is the process of visually exploring data for pattern and trend analysis, and it is a common method of browsing spatial datasets to look for patterns. However the growing volume of spatial datasets make it difficult for humans to browse such datasets in their entirety, and data mining algorithms are needed to filter out large uninteresting parts of spatial datasets. We construct a web-based visualization software package for observing the summarization of spatial patterns and temporal trends. We also present data mining algorithms for filtering out vast parts of datasets for spatial outlier patterns. The algorithms were implemented and tested with a real-world set of Minneapolis-St. Paul (Twin Cities) traffic data.