Y. Zheng, Chen Gao, Xiang Li, Xiangnan He, Depeng Jin, Yong Li
{"title":"基于因果嵌入的推荐用户兴趣与一致性分析","authors":"Y. Zheng, Chen Gao, Xiang Li, Xiangnan He, Depeng Jin, Yong Li","doi":"10.1145/3442381.3449788","DOIUrl":null,"url":null,"abstract":"Recommendation models are usually trained on observational interaction data. However, observational interaction data could result from users’ conformity towards popular items, which entangles users’ real interest. Existing methods tracks this problem as eliminating popularity bias, e.g., by re-weighting training samples or leveraging a small fraction of unbiased data. However, the variety of user conformity is ignored by these approaches, and different causes of an interaction are bundled together as unified representations, hence robustness and interpretability are not guaranteed when underlying causes are changing. In this paper, we present DICE, a general framework that learns representations where interest and conformity are structurally disentangled, and various backbone recommendation models could be smoothly integrated. We assign users and items with separate embeddings for interest and conformity, and make each embedding capture only one cause by training with cause-specific data which is obtained according to the colliding effect of causal inference. Our proposed methodology outperforms state-of-the-art baselines with remarkable improvements on two real-world datasets on top of various backbone models. We further demonstrate that the learned embeddings successfully capture the desired causes, and show that DICE guarantees the robustness and interpretability of recommendation.","PeriodicalId":106672,"journal":{"name":"Proceedings of the Web Conference 2021","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"177","resultStr":"{\"title\":\"Disentangling User Interest and Conformity for Recommendation with Causal Embedding\",\"authors\":\"Y. Zheng, Chen Gao, Xiang Li, Xiangnan He, Depeng Jin, Yong Li\",\"doi\":\"10.1145/3442381.3449788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommendation models are usually trained on observational interaction data. However, observational interaction data could result from users’ conformity towards popular items, which entangles users’ real interest. Existing methods tracks this problem as eliminating popularity bias, e.g., by re-weighting training samples or leveraging a small fraction of unbiased data. However, the variety of user conformity is ignored by these approaches, and different causes of an interaction are bundled together as unified representations, hence robustness and interpretability are not guaranteed when underlying causes are changing. In this paper, we present DICE, a general framework that learns representations where interest and conformity are structurally disentangled, and various backbone recommendation models could be smoothly integrated. We assign users and items with separate embeddings for interest and conformity, and make each embedding capture only one cause by training with cause-specific data which is obtained according to the colliding effect of causal inference. Our proposed methodology outperforms state-of-the-art baselines with remarkable improvements on two real-world datasets on top of various backbone models. We further demonstrate that the learned embeddings successfully capture the desired causes, and show that DICE guarantees the robustness and interpretability of recommendation.\",\"PeriodicalId\":106672,\"journal\":{\"name\":\"Proceedings of the Web Conference 2021\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"177\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Web Conference 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3442381.3449788\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442381.3449788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Disentangling User Interest and Conformity for Recommendation with Causal Embedding
Recommendation models are usually trained on observational interaction data. However, observational interaction data could result from users’ conformity towards popular items, which entangles users’ real interest. Existing methods tracks this problem as eliminating popularity bias, e.g., by re-weighting training samples or leveraging a small fraction of unbiased data. However, the variety of user conformity is ignored by these approaches, and different causes of an interaction are bundled together as unified representations, hence robustness and interpretability are not guaranteed when underlying causes are changing. In this paper, we present DICE, a general framework that learns representations where interest and conformity are structurally disentangled, and various backbone recommendation models could be smoothly integrated. We assign users and items with separate embeddings for interest and conformity, and make each embedding capture only one cause by training with cause-specific data which is obtained according to the colliding effect of causal inference. Our proposed methodology outperforms state-of-the-art baselines with remarkable improvements on two real-world datasets on top of various backbone models. We further demonstrate that the learned embeddings successfully capture the desired causes, and show that DICE guarantees the robustness and interpretability of recommendation.