{"title":"动态可重构系统辐射诱导seu分析","authors":"L. Sterpone, L. Boragno, D. M. Codinachs","doi":"10.1109/ReCoSoC.2016.7533907","DOIUrl":null,"url":null,"abstract":"SRAM-Based FPGAs are widely employed in space and avionics computing. The unfriendly environment and FPGA radiation sensibility can have dramatic drawbacks on the application reliability. The partial self-reconfiguration ability gives an excellent aid to counteract single event upsets (SEUs) caused by excessive silicon ionization, and the consequent system misbehavior. Related to this feature, fault injection and fault emulation and configuration scrubbing, has been carried out over three versions of a reconfigurable Fast Fourier Transform (FFT) system: a single FFT, a single larger FFT and a FFT with TMR architecture. The analysis has been focused on multiple injected SEUs scenario, considering the availability problem in a real-time application and highlighting the circuit tolerance at the upset presence. This operation has the goal to emulate as much as possible a real radiation test avoiding all the handicaps that this procedure involves. The obtained results have shown the advantages of the configuration scrubbing performed with the aim to fix multiple upsets, achieving up to 13.6% of circuit hardening. The achieved conclusions are an interesting starting point for the study of fault mitigation techniques through the use of reconfiguration. The projects have been tested on a Z-7010 AP SoC.","PeriodicalId":248789,"journal":{"name":"2016 11th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analysis of radiation-induced SEUs on dynamic reconfigurable systems\",\"authors\":\"L. Sterpone, L. Boragno, D. M. Codinachs\",\"doi\":\"10.1109/ReCoSoC.2016.7533907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SRAM-Based FPGAs are widely employed in space and avionics computing. The unfriendly environment and FPGA radiation sensibility can have dramatic drawbacks on the application reliability. The partial self-reconfiguration ability gives an excellent aid to counteract single event upsets (SEUs) caused by excessive silicon ionization, and the consequent system misbehavior. Related to this feature, fault injection and fault emulation and configuration scrubbing, has been carried out over three versions of a reconfigurable Fast Fourier Transform (FFT) system: a single FFT, a single larger FFT and a FFT with TMR architecture. The analysis has been focused on multiple injected SEUs scenario, considering the availability problem in a real-time application and highlighting the circuit tolerance at the upset presence. This operation has the goal to emulate as much as possible a real radiation test avoiding all the handicaps that this procedure involves. The obtained results have shown the advantages of the configuration scrubbing performed with the aim to fix multiple upsets, achieving up to 13.6% of circuit hardening. The achieved conclusions are an interesting starting point for the study of fault mitigation techniques through the use of reconfiguration. The projects have been tested on a Z-7010 AP SoC.\",\"PeriodicalId\":248789,\"journal\":{\"name\":\"2016 11th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 11th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ReCoSoC.2016.7533907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 11th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReCoSoC.2016.7533907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
基于sram的fpga广泛应用于空间和航空电子计算中。不友好的环境和FPGA对辐射的敏感性会对应用的可靠性造成严重的影响。部分自重构能力提供了一个很好的帮助,以抵消单事件扰动(SEUs)引起的过度硅电离,以及随之而来的系统行为不当。与此特性相关的故障注入、故障仿真和配置清洗已经在可重构快速傅里叶变换(FFT)系统的三个版本上进行:单个FFT、单个较大FFT和具有TMR架构的FFT。分析的重点是多注入seu场景,考虑了实时应用中的可用性问题,并强调了扰动存在时的电路容限。该手术的目标是尽可能模拟真实的辐射测试,避免该手术所涉及的所有障碍。所获得的结果表明,为了修复多次镦粗而进行的配置洗涤具有优势,可实现高达13.6%的回路硬化。所获得的结论是通过使用重构来研究故障缓解技术的一个有趣的起点。这些项目已经在Z-7010 AP SoC上进行了测试。
Analysis of radiation-induced SEUs on dynamic reconfigurable systems
SRAM-Based FPGAs are widely employed in space and avionics computing. The unfriendly environment and FPGA radiation sensibility can have dramatic drawbacks on the application reliability. The partial self-reconfiguration ability gives an excellent aid to counteract single event upsets (SEUs) caused by excessive silicon ionization, and the consequent system misbehavior. Related to this feature, fault injection and fault emulation and configuration scrubbing, has been carried out over three versions of a reconfigurable Fast Fourier Transform (FFT) system: a single FFT, a single larger FFT and a FFT with TMR architecture. The analysis has been focused on multiple injected SEUs scenario, considering the availability problem in a real-time application and highlighting the circuit tolerance at the upset presence. This operation has the goal to emulate as much as possible a real radiation test avoiding all the handicaps that this procedure involves. The obtained results have shown the advantages of the configuration scrubbing performed with the aim to fix multiple upsets, achieving up to 13.6% of circuit hardening. The achieved conclusions are an interesting starting point for the study of fault mitigation techniques through the use of reconfiguration. The projects have been tested on a Z-7010 AP SoC.