H. Kale, Prathamesh Mandke, Hrishikesh Mahajan, Vedant Deshpande
{"title":"基于人工神经网络的人体姿势识别","authors":"H. Kale, Prathamesh Mandke, Hrishikesh Mahajan, Vedant Deshpande","doi":"10.1109/IADCC.2018.8692143","DOIUrl":null,"url":null,"abstract":"This paper proposes the use of artificial neural networks(ANNs) to classify human postures, using an invasive(intrusive) approach, into 6 categories namely standing, sitting, sleeping and bending - forward and backward. Human posture recognition has numerous applications in the field of healthcare analysis like patient monitoring, lifestyle analysis, elderly care etc. Most importantly, our solution is capable of classifying the aforementioned postures in real-time, by wirelessly(Wi-Fi) acquiring and processing the sensor data on a Raspberry-Pi device with minimal lag. A data-set of 44,800 samples was collected - from 3 subjects - which was used to train and test the neural network. After experimenting and testing with a plethora of network architectures, an optimal neural network architecture(6-9-6) with suitable hyper-parameters was determined which gave an overall accuracy of 97.589%.","PeriodicalId":365713,"journal":{"name":"2018 IEEE 8th International Advance Computing Conference (IACC)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Human Posture Recognition using Artificial Neural Networks\",\"authors\":\"H. Kale, Prathamesh Mandke, Hrishikesh Mahajan, Vedant Deshpande\",\"doi\":\"10.1109/IADCC.2018.8692143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the use of artificial neural networks(ANNs) to classify human postures, using an invasive(intrusive) approach, into 6 categories namely standing, sitting, sleeping and bending - forward and backward. Human posture recognition has numerous applications in the field of healthcare analysis like patient monitoring, lifestyle analysis, elderly care etc. Most importantly, our solution is capable of classifying the aforementioned postures in real-time, by wirelessly(Wi-Fi) acquiring and processing the sensor data on a Raspberry-Pi device with minimal lag. A data-set of 44,800 samples was collected - from 3 subjects - which was used to train and test the neural network. After experimenting and testing with a plethora of network architectures, an optimal neural network architecture(6-9-6) with suitable hyper-parameters was determined which gave an overall accuracy of 97.589%.\",\"PeriodicalId\":365713,\"journal\":{\"name\":\"2018 IEEE 8th International Advance Computing Conference (IACC)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 8th International Advance Computing Conference (IACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IADCC.2018.8692143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 8th International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2018.8692143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Human Posture Recognition using Artificial Neural Networks
This paper proposes the use of artificial neural networks(ANNs) to classify human postures, using an invasive(intrusive) approach, into 6 categories namely standing, sitting, sleeping and bending - forward and backward. Human posture recognition has numerous applications in the field of healthcare analysis like patient monitoring, lifestyle analysis, elderly care etc. Most importantly, our solution is capable of classifying the aforementioned postures in real-time, by wirelessly(Wi-Fi) acquiring and processing the sensor data on a Raspberry-Pi device with minimal lag. A data-set of 44,800 samples was collected - from 3 subjects - which was used to train and test the neural network. After experimenting and testing with a plethora of network architectures, an optimal neural network architecture(6-9-6) with suitable hyper-parameters was determined which gave an overall accuracy of 97.589%.