动态图中基于约束的模式挖掘

C. Robardet
{"title":"动态图中基于约束的模式挖掘","authors":"C. Robardet","doi":"10.1109/ICDM.2009.99","DOIUrl":null,"url":null,"abstract":"Dynamic graphs are used to represent relationships between entities that evolve over time. Meaningful patterns in such structured data must capture strong interactions and their evolution over time. In social networks, such patterns can be seen as dynamic community structures, i.e., sets of individuals who strongly and repeatedly interact. In this paper, we propose a constraint-based mining approach to uncover evolving patterns. We propose to mine dense and isolated subgraphs defined by two user-parameterized constraints. The temporal evolution of such patterns is captured by associating a temporal event type to each identified subgraph. We consider five basic temporal events: The formation, dissolution, growth, diminution and stability of subgraphs from one time stamp to the next. We propose an algorithm that finds such subgraphs in a time series of graphs processed incrementally. The extraction is feasible due to efficient patterns and data pruning strategies. We demonstrate the applicability of our method on several real-world dynamic graphs and extract meaningful evolving communities.","PeriodicalId":247645,"journal":{"name":"2009 Ninth IEEE International Conference on Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"58","resultStr":"{\"title\":\"Constraint-Based Pattern Mining in Dynamic Graphs\",\"authors\":\"C. Robardet\",\"doi\":\"10.1109/ICDM.2009.99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic graphs are used to represent relationships between entities that evolve over time. Meaningful patterns in such structured data must capture strong interactions and their evolution over time. In social networks, such patterns can be seen as dynamic community structures, i.e., sets of individuals who strongly and repeatedly interact. In this paper, we propose a constraint-based mining approach to uncover evolving patterns. We propose to mine dense and isolated subgraphs defined by two user-parameterized constraints. The temporal evolution of such patterns is captured by associating a temporal event type to each identified subgraph. We consider five basic temporal events: The formation, dissolution, growth, diminution and stability of subgraphs from one time stamp to the next. We propose an algorithm that finds such subgraphs in a time series of graphs processed incrementally. The extraction is feasible due to efficient patterns and data pruning strategies. We demonstrate the applicability of our method on several real-world dynamic graphs and extract meaningful evolving communities.\",\"PeriodicalId\":247645,\"journal\":{\"name\":\"2009 Ninth IEEE International Conference on Data Mining\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"58\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth IEEE International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2009.99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2009.99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 58

摘要

动态图用于表示随时间变化的实体之间的关系。这种结构化数据中有意义的模式必须捕获强交互及其随时间的演变。在社交网络中,这种模式可以被看作是动态的社区结构,也就是说,一组强烈且反复互动的个体。在本文中,我们提出了一种基于约束的挖掘方法来发现不断变化的模式。我们提出挖掘由两个用户参数化约束定义的密集和隔离子图。通过将时间事件类型关联到每个已识别的子图,可以捕获这些模式的时间演变。我们考虑了五个基本的时间事件:子图从一个时间戳到下一个时间戳的形成、分解、增长、减少和稳定性。我们提出了一种算法,可以在增量处理的图的时间序列中找到这样的子图。由于采用了有效的模式和数据修剪策略,使得提取是可行的。我们证明了我们的方法在几个真实世界的动态图上的适用性,并提取了有意义的进化群落。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Constraint-Based Pattern Mining in Dynamic Graphs
Dynamic graphs are used to represent relationships between entities that evolve over time. Meaningful patterns in such structured data must capture strong interactions and their evolution over time. In social networks, such patterns can be seen as dynamic community structures, i.e., sets of individuals who strongly and repeatedly interact. In this paper, we propose a constraint-based mining approach to uncover evolving patterns. We propose to mine dense and isolated subgraphs defined by two user-parameterized constraints. The temporal evolution of such patterns is captured by associating a temporal event type to each identified subgraph. We consider five basic temporal events: The formation, dissolution, growth, diminution and stability of subgraphs from one time stamp to the next. We propose an algorithm that finds such subgraphs in a time series of graphs processed incrementally. The extraction is feasible due to efficient patterns and data pruning strategies. We demonstrate the applicability of our method on several real-world dynamic graphs and extract meaningful evolving communities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Probabilistic Similarity Query on Dimension Incomplete Data Outlier Detection Using Inductive Logic Programming GSML: A Unified Framework for Sparse Metric Learning Naive Bayes Classification of Uncertain Data PEGASUS: A Peta-Scale Graph Mining System Implementation and Observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1