J. Siegmund, Norman Peitek, Chris Parnin, S. Apel, Johannes C. Hofmeister, Christian Kästner, Andrew Begel, A. Bethmann, A. Brechmann
{"title":"测量程序理解的神经效率","authors":"J. Siegmund, Norman Peitek, Chris Parnin, S. Apel, Johannes C. Hofmeister, Christian Kästner, Andrew Begel, A. Bethmann, A. Brechmann","doi":"10.1145/3106237.3106268","DOIUrl":null,"url":null,"abstract":"Most modern software programs cannot be understood in their entirety by a single programmer. Instead, programmers must rely on a set of cognitive processes that aid in seeking, filtering, and shaping relevant information for a given programming task. Several theories have been proposed to explain these processes, such as ``beacons,' for locating relevant code, and ``plans,'' for encoding cognitive models. However, these theories are decades old and lack validation with modern cognitive-neuroscience methods. In this paper, we report on a study using functional magnetic resonance imaging (fMRI) with 11 participants who performed program comprehension tasks. We manipulated experimental conditions related to beacons and layout to isolate specific cognitive processes related to bottom-up comprehension and comprehension based on semantic cues. We found evidence of semantic chunking during bottom-up comprehension and lower activation of brain areas during comprehension based on semantic cues, confirming that beacons ease comprehension.","PeriodicalId":313494,"journal":{"name":"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering","volume":"114 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"101","resultStr":"{\"title\":\"Measuring neural efficiency of program comprehension\",\"authors\":\"J. Siegmund, Norman Peitek, Chris Parnin, S. Apel, Johannes C. Hofmeister, Christian Kästner, Andrew Begel, A. Bethmann, A. Brechmann\",\"doi\":\"10.1145/3106237.3106268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most modern software programs cannot be understood in their entirety by a single programmer. Instead, programmers must rely on a set of cognitive processes that aid in seeking, filtering, and shaping relevant information for a given programming task. Several theories have been proposed to explain these processes, such as ``beacons,' for locating relevant code, and ``plans,'' for encoding cognitive models. However, these theories are decades old and lack validation with modern cognitive-neuroscience methods. In this paper, we report on a study using functional magnetic resonance imaging (fMRI) with 11 participants who performed program comprehension tasks. We manipulated experimental conditions related to beacons and layout to isolate specific cognitive processes related to bottom-up comprehension and comprehension based on semantic cues. We found evidence of semantic chunking during bottom-up comprehension and lower activation of brain areas during comprehension based on semantic cues, confirming that beacons ease comprehension.\",\"PeriodicalId\":313494,\"journal\":{\"name\":\"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering\",\"volume\":\"114 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"101\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3106237.3106268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3106237.3106268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Measuring neural efficiency of program comprehension
Most modern software programs cannot be understood in their entirety by a single programmer. Instead, programmers must rely on a set of cognitive processes that aid in seeking, filtering, and shaping relevant information for a given programming task. Several theories have been proposed to explain these processes, such as ``beacons,' for locating relevant code, and ``plans,'' for encoding cognitive models. However, these theories are decades old and lack validation with modern cognitive-neuroscience methods. In this paper, we report on a study using functional magnetic resonance imaging (fMRI) with 11 participants who performed program comprehension tasks. We manipulated experimental conditions related to beacons and layout to isolate specific cognitive processes related to bottom-up comprehension and comprehension based on semantic cues. We found evidence of semantic chunking during bottom-up comprehension and lower activation of brain areas during comprehension based on semantic cues, confirming that beacons ease comprehension.