使用英特尔IFMA扩展加速大整数运算

S. Gueron, V. Krasnov
{"title":"使用英特尔IFMA扩展加速大整数运算","authors":"S. Gueron, V. Krasnov","doi":"10.1109/ARITH.2016.22","DOIUrl":null,"url":null,"abstract":"Intel has recently announced a new set of processor instructions, dubbed AVX512IFMA, that carry out Integer Fused Multiply Accumulate operations. These instructions operate on 512-bit registers and compute eight independent 52-bit unsigned integer multiplications, to generate eight 104-bit products, and accumulate their low/high halves into 64-bit containers. Using these instructions requires that inputs are converted to (redundant form) radix 252, and outputs are converted to the desired representation. This paper demonstrates several techniques for leveraging the AVX512IFMA instructions in order to speed up big-integer multiplications. Although processors that support AVX512IFMA are not yet available at the time this paper is written, we show how currently available public tools can be used for estimating their potential performance benefits. For example, based on these tools, we expect a 2x speedup for 1024-bit integer multiplication, over the best currently available method.","PeriodicalId":145448,"journal":{"name":"2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Accelerating Big Integer Arithmetic Using Intel IFMA Extensions\",\"authors\":\"S. Gueron, V. Krasnov\",\"doi\":\"10.1109/ARITH.2016.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intel has recently announced a new set of processor instructions, dubbed AVX512IFMA, that carry out Integer Fused Multiply Accumulate operations. These instructions operate on 512-bit registers and compute eight independent 52-bit unsigned integer multiplications, to generate eight 104-bit products, and accumulate their low/high halves into 64-bit containers. Using these instructions requires that inputs are converted to (redundant form) radix 252, and outputs are converted to the desired representation. This paper demonstrates several techniques for leveraging the AVX512IFMA instructions in order to speed up big-integer multiplications. Although processors that support AVX512IFMA are not yet available at the time this paper is written, we show how currently available public tools can be used for estimating their potential performance benefits. For example, based on these tools, we expect a 2x speedup for 1024-bit integer multiplication, over the best currently available method.\",\"PeriodicalId\":145448,\"journal\":{\"name\":\"2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH)\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.2016.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2016.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

英特尔最近宣布了一套新的处理器指令,称为AVX512IFMA,用于执行整数融合乘法累加操作。这些指令在512位寄存器上操作,并计算8个独立的52位无符号整数乘法,生成8个104位乘积,并将它们的低/高一半累积到64位容器中。使用这些指令需要将输入转换为(冗余形式)基数252,并将输出转换为所需的表示形式。本文演示了利用AVX512IFMA指令来加速大整数乘法的几种技术。虽然在撰写本文时支持AVX512IFMA的处理器尚未可用,但我们展示了如何使用当前可用的公共工具来评估其潜在的性能优势。例如,基于这些工具,我们期望1024位整数乘法的速度比当前可用的最佳方法提高2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating Big Integer Arithmetic Using Intel IFMA Extensions
Intel has recently announced a new set of processor instructions, dubbed AVX512IFMA, that carry out Integer Fused Multiply Accumulate operations. These instructions operate on 512-bit registers and compute eight independent 52-bit unsigned integer multiplications, to generate eight 104-bit products, and accumulate their low/high halves into 64-bit containers. Using these instructions requires that inputs are converted to (redundant form) radix 252, and outputs are converted to the desired representation. This paper demonstrates several techniques for leveraging the AVX512IFMA instructions in order to speed up big-integer multiplications. Although processors that support AVX512IFMA are not yet available at the time this paper is written, we show how currently available public tools can be used for estimating their potential performance benefits. For example, based on these tools, we expect a 2x speedup for 1024-bit integer multiplication, over the best currently available method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy and Performance Trade-Offs of Logarithmic Number Units in Multi-Core Clusters Recovering Numerical Reproducibility in Hydrodynamic Simulations Multi-fault Attack Detection for RNS Cryptographic Architecture Accelerating Big Integer Arithmetic Using Intel IFMA Extensions A CRC-Based Concurrent Fault Detection Architecture for Galois/Counter Mode (GCM)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1