利用足底压力数据检测拇外翻异常

Latif Rozaqi, Yukhi Mustaqim Kusuma Sya'Bana, Asep Nugroho, Nugrahaning Sani Dewi, Kadek Heri Sanjaya
{"title":"利用足底压力数据检测拇外翻异常","authors":"Latif Rozaqi, Yukhi Mustaqim Kusuma Sya'Bana, Asep Nugroho, Nugrahaning Sani Dewi, Kadek Heri Sanjaya","doi":"10.1145/3575882.3575952","DOIUrl":null,"url":null,"abstract":"Machine learning is a superior tool that is unbiased and moderately comparable to the medical expert in making medical diagnostics if trained with correct supervision. In this paper we developed a supervised learning algorithm employing plantar pressure data to detect the anomaly called hallux valgus (HV) on a number of subject. Support vector machine (SVM) and its variants such as kernel SVM and ensemble SVM were evaluated on a plantar pressure open dataset. Results show that SVMs in general have the average classification rate of above 90 percent.","PeriodicalId":367340,"journal":{"name":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anomaly Detection of Hallux Valgus using Plantar Pressure Data\",\"authors\":\"Latif Rozaqi, Yukhi Mustaqim Kusuma Sya'Bana, Asep Nugroho, Nugrahaning Sani Dewi, Kadek Heri Sanjaya\",\"doi\":\"10.1145/3575882.3575952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning is a superior tool that is unbiased and moderately comparable to the medical expert in making medical diagnostics if trained with correct supervision. In this paper we developed a supervised learning algorithm employing plantar pressure data to detect the anomaly called hallux valgus (HV) on a number of subject. Support vector machine (SVM) and its variants such as kernel SVM and ensemble SVM were evaluated on a plantar pressure open dataset. Results show that SVMs in general have the average classification rate of above 90 percent.\",\"PeriodicalId\":367340,\"journal\":{\"name\":\"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications\",\"volume\":\"142 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3575882.3575952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575882.3575952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习是一种优秀的工具,如果在正确的监督下进行训练,它在进行医疗诊断方面是公正的,可以与医学专家相媲美。在本文中,我们开发了一种监督学习算法,利用足底压力数据来检测许多受试者的拇外翻(HV)异常。在一个足底压力开放数据集上对支持向量机及其变体(核支持向量机和集合支持向量机)进行了评估。结果表明,支持向量机的平均分类率在90%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anomaly Detection of Hallux Valgus using Plantar Pressure Data
Machine learning is a superior tool that is unbiased and moderately comparable to the medical expert in making medical diagnostics if trained with correct supervision. In this paper we developed a supervised learning algorithm employing plantar pressure data to detect the anomaly called hallux valgus (HV) on a number of subject. Support vector machine (SVM) and its variants such as kernel SVM and ensemble SVM were evaluated on a plantar pressure open dataset. Results show that SVMs in general have the average classification rate of above 90 percent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling the climate factors affecting forest fire in Sumatra using Random Forest and Artificial Neural Network Parallel Programming in Finite Difference Method to Solve Turing's Model of Spot Pattern Identification of Hoya Plant using Convolutional Neural Network (CNN) and Transfer Learning Android-based Forest Fire Danger Rating Information System for Early Prevention of Forest / Land fires Leak Detection using Non-Intrusive Ultrasonic Water Flowmeter Sensor in Water Distribution Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1