分布式存储体系结构上非结构化网格数据的并行体光线投射

K. Ma
{"title":"分布式存储体系结构上非结构化网格数据的并行体光线投射","authors":"K. Ma","doi":"10.1145/218327.218333","DOIUrl":null,"url":null,"abstract":"Abstract : As computing technology continues to advance, computational modeling of scientific and engineering problems produces data of increasing complexity: large in size and unstructured in shape. Volume visualization of such data is a challenging problem. This paper proposes a distributed parallel solution that makes ray-casting volume rendering of unstructured-grid data practical. Both the data and the rendering process are distributed among processors. At each processor, ray-casting of local data is performed independent of the other processors. The global image compositing processes, which require inter-processor communication, are overlapped with the local ray-casting processes to achieve maximum parallel efficiency. This algorithm differs from previous ones in four ways: it is completely distributed, less view-dependent, reasonably scalable, and flexible. Without using dynamic load balancing, test results on the Intel Paragon using from two to 128 processors show, on average, about 60% parallel efficiency.","PeriodicalId":101947,"journal":{"name":"Proceedings of the IEEE symposium on Parallel rendering","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":"{\"title\":\"Parallel volume ray-casting for unstructured-grid data on distributed-memory architectures\",\"authors\":\"K. Ma\",\"doi\":\"10.1145/218327.218333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract : As computing technology continues to advance, computational modeling of scientific and engineering problems produces data of increasing complexity: large in size and unstructured in shape. Volume visualization of such data is a challenging problem. This paper proposes a distributed parallel solution that makes ray-casting volume rendering of unstructured-grid data practical. Both the data and the rendering process are distributed among processors. At each processor, ray-casting of local data is performed independent of the other processors. The global image compositing processes, which require inter-processor communication, are overlapped with the local ray-casting processes to achieve maximum parallel efficiency. This algorithm differs from previous ones in four ways: it is completely distributed, less view-dependent, reasonably scalable, and flexible. Without using dynamic load balancing, test results on the Intel Paragon using from two to 128 processors show, on average, about 60% parallel efficiency.\",\"PeriodicalId\":101947,\"journal\":{\"name\":\"Proceedings of the IEEE symposium on Parallel rendering\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"91\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE symposium on Parallel rendering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/218327.218333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE symposium on Parallel rendering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/218327.218333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 91

摘要

摘要:随着计算技术的不断进步,科学和工程问题的计算建模产生的数据越来越复杂,数据规模大,形状非结构化。这类数据的体可视化是一个具有挑战性的问题。本文提出了一种分布式并行解决方案,使非结构化网格数据的光线投射体绘制成为可能。数据和呈现过程都分布在处理器之间。在每个处理器上,本地数据的光线投射是独立于其他处理器执行的。需要处理器间通信的全局图像合成过程与局部光线投射过程重叠,以达到最大的并行效率。该算法与以前的算法有四个不同之处:它是完全分布式的,较少依赖于视图,合理的可扩展性和灵活性。在不使用动态负载平衡的情况下,使用2到128个处理器的Intel Paragon上的测试结果显示,平均并行效率约为60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel volume ray-casting for unstructured-grid data on distributed-memory architectures
Abstract : As computing technology continues to advance, computational modeling of scientific and engineering problems produces data of increasing complexity: large in size and unstructured in shape. Volume visualization of such data is a challenging problem. This paper proposes a distributed parallel solution that makes ray-casting volume rendering of unstructured-grid data practical. Both the data and the rendering process are distributed among processors. At each processor, ray-casting of local data is performed independent of the other processors. The global image compositing processes, which require inter-processor communication, are overlapped with the local ray-casting processes to achieve maximum parallel efficiency. This algorithm differs from previous ones in four ways: it is completely distributed, less view-dependent, reasonably scalable, and flexible. Without using dynamic load balancing, test results on the Intel Paragon using from two to 128 processors show, on average, about 60% parallel efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Remote interactive visualization and analysis (RIVA) using parallel supercomputers Efficient parallel global illumination using density estimation Real-time volume rendering on shared memory multiprocessors using the shear-warp factorization Image composition methods for sort-last polygon rendering on 2-D mesh architectures Implementation results and analysis of a parallel progressive radiosity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1