未知先验信息数据样本可靠性评估理论

L. Ye, X. Xia, Z. Chang
{"title":"未知先验信息数据样本可靠性评估理论","authors":"L. Ye, X. Xia, Z. Chang","doi":"10.1109/IICSPI48186.2019.9095953","DOIUrl":null,"url":null,"abstract":"Hierarchical maximum entropy Bayesian method is proposed to establish the reliability evaluation model for data sample with unknown priori information. The probability density functions are calculated for different time series using the maximum entropy principles and the Bayesian method is utilized to obtain the posterior sample information for different time intervals. The values of performance continuity relative reliability for time series data sample can be calculated during the corresponding time intervals and the failure degree maintaining optimum performance status in the future can be predicted.","PeriodicalId":318693,"journal":{"name":"2019 2nd International Conference on Safety Produce Informatization (IICSPI)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability Evaluating Theory for Data Sample with Unknown Priori Information\",\"authors\":\"L. Ye, X. Xia, Z. Chang\",\"doi\":\"10.1109/IICSPI48186.2019.9095953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hierarchical maximum entropy Bayesian method is proposed to establish the reliability evaluation model for data sample with unknown priori information. The probability density functions are calculated for different time series using the maximum entropy principles and the Bayesian method is utilized to obtain the posterior sample information for different time intervals. The values of performance continuity relative reliability for time series data sample can be calculated during the corresponding time intervals and the failure degree maintaining optimum performance status in the future can be predicted.\",\"PeriodicalId\":318693,\"journal\":{\"name\":\"2019 2nd International Conference on Safety Produce Informatization (IICSPI)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd International Conference on Safety Produce Informatization (IICSPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICSPI48186.2019.9095953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI48186.2019.9095953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对未知先验信息的数据样本,提出了层次最大熵贝叶斯方法建立可靠性评估模型。利用最大熵原理计算不同时间序列的概率密度函数,并利用贝叶斯方法获得不同时间间隔的后验样本信息。计算时间序列数据样本在相应时间间隔内的性能连续性相对可靠性值,预测未来保持最佳性能状态的失效程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reliability Evaluating Theory for Data Sample with Unknown Priori Information
Hierarchical maximum entropy Bayesian method is proposed to establish the reliability evaluation model for data sample with unknown priori information. The probability density functions are calculated for different time series using the maximum entropy principles and the Bayesian method is utilized to obtain the posterior sample information for different time intervals. The values of performance continuity relative reliability for time series data sample can be calculated during the corresponding time intervals and the failure degree maintaining optimum performance status in the future can be predicted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Analysis and Design of System of Experimental Consumables Based on Django and QR code Analysis and Research on the Characteristics of Boiled Yolk based on Hyperspectral Remote Sensing Images Density Peaks Spatial Clustering by Grid Neighborhood Search Modeling of Superheated Steam Temperature Characteristics Based on Fireworks Algorithm Optimized Extreme Learning Machine Fusion Chaotic Prediction Model for Bearing Performance by Computer Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1