基于广义变参数hmm和说话人自适应的结构化建模

Yang Li, Xunying Liu, Lan Wang
{"title":"基于广义变参数hmm和说话人自适应的结构化建模","authors":"Yang Li, Xunying Liu, Lan Wang","doi":"10.1109/ISCSLP.2012.6423526","DOIUrl":null,"url":null,"abstract":"It is a challenging task that to handle ambient variable acoustic factors in automatic speech recognition (ASR) system. The ambient variable noise and the distinct acoustic factors among speakers are two key issues for recognition task. To solve these problems, we present a new framework for robust speech recognition based on structured modeling, using generalized variable parameter HMMs (GVP-HMMs) and unsupervised speaker adaptation (SA) to compensate the mismatch from environment and speaker variability. GVP-HMMs can explicitly approximate the continuous trajectory of Gaussian component mean, variance and linear transformation parameter with a polynomial function against the varying noise level. In recognition stage, MLLR transform captures general relationship between the original model set and the current speaker, which could help in removing the effects of unwanted speaker factors. The effectiveness of the proposed approach is confirmed by evaluation experiment on a medium vocabulary Mandarin recognition task.","PeriodicalId":186099,"journal":{"name":"2012 8th International Symposium on Chinese Spoken Language Processing","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Structured modeling based on generalized variable parameter HMMs and speaker adaptation\",\"authors\":\"Yang Li, Xunying Liu, Lan Wang\",\"doi\":\"10.1109/ISCSLP.2012.6423526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is a challenging task that to handle ambient variable acoustic factors in automatic speech recognition (ASR) system. The ambient variable noise and the distinct acoustic factors among speakers are two key issues for recognition task. To solve these problems, we present a new framework for robust speech recognition based on structured modeling, using generalized variable parameter HMMs (GVP-HMMs) and unsupervised speaker adaptation (SA) to compensate the mismatch from environment and speaker variability. GVP-HMMs can explicitly approximate the continuous trajectory of Gaussian component mean, variance and linear transformation parameter with a polynomial function against the varying noise level. In recognition stage, MLLR transform captures general relationship between the original model set and the current speaker, which could help in removing the effects of unwanted speaker factors. The effectiveness of the proposed approach is confirmed by evaluation experiment on a medium vocabulary Mandarin recognition task.\",\"PeriodicalId\":186099,\"journal\":{\"name\":\"2012 8th International Symposium on Chinese Spoken Language Processing\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 8th International Symposium on Chinese Spoken Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCSLP.2012.6423526\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCSLP.2012.6423526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在自动语音识别系统中,环境变声因素的处理是一项具有挑战性的任务。环境噪声的变化和说话人之间不同的声学因素是识别任务的两个关键问题。为了解决这些问题,我们提出了一种基于结构化建模的鲁棒语音识别框架,利用广义变参数hmm (gvp - hmm)和无监督说话人自适应(SA)来补偿环境和说话人变化的不匹配。gvp - hmm可以用多项式函数显式逼近高斯分量均值、方差和线性变换参数随噪声水平变化的连续轨迹。在识别阶段,MLLR变换捕捉原始模型集与当前说话人之间的一般关系,有助于消除不需要的说话人因素的影响。在一个中等词汇量的普通话识别任务上进行了评价实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structured modeling based on generalized variable parameter HMMs and speaker adaptation
It is a challenging task that to handle ambient variable acoustic factors in automatic speech recognition (ASR) system. The ambient variable noise and the distinct acoustic factors among speakers are two key issues for recognition task. To solve these problems, we present a new framework for robust speech recognition based on structured modeling, using generalized variable parameter HMMs (GVP-HMMs) and unsupervised speaker adaptation (SA) to compensate the mismatch from environment and speaker variability. GVP-HMMs can explicitly approximate the continuous trajectory of Gaussian component mean, variance and linear transformation parameter with a polynomial function against the varying noise level. In recognition stage, MLLR transform captures general relationship between the original model set and the current speaker, which could help in removing the effects of unwanted speaker factors. The effectiveness of the proposed approach is confirmed by evaluation experiment on a medium vocabulary Mandarin recognition task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Noise-robust whispered speech recognition using a non-audible-murmur microphone with VTS compensation Effects of excitation spread on the intelligibility of Mandarin speech in cochlear implant simulations A comparative study of fMPE and RDLT approaches to LVCSR Keyword-specific normalization based keyword spotting for spontaneous speech A unified trajectory tiling approach to high quality TTS and cross-lingual voice transformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1