{"title":"L_1范数与L_2范数多核支持向量机在图像和视频分类中的比较","authors":"F. Yan, K. Mikolajczyk, J. Kittler, M. Tahir","doi":"10.1109/CBMI.2009.44","DOIUrl":null,"url":null,"abstract":"SVM is one of the state-of-the-art techniques for image and video classification. When multiple kernels are available, the recently introduced multiple kernel SVM (MK-SVM) learns an optimal linear combination of the kernels, providing a new method for information fusion. In this paper we study how the behaviour of MK-SVM is affected by the norm used to regularise the kernel weights to be learnt. Through experiments on three image/video classification datasets as well as on synthesised data, new insights are gained as to how the choice of regularisation norm should be made, especially when MK-SVM is applied to image/video classification problems.","PeriodicalId":417012,"journal":{"name":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A Comparison of L_1 Norm and L_2 Norm Multiple Kernel SVMs in Image and Video Classification\",\"authors\":\"F. Yan, K. Mikolajczyk, J. Kittler, M. Tahir\",\"doi\":\"10.1109/CBMI.2009.44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SVM is one of the state-of-the-art techniques for image and video classification. When multiple kernels are available, the recently introduced multiple kernel SVM (MK-SVM) learns an optimal linear combination of the kernels, providing a new method for information fusion. In this paper we study how the behaviour of MK-SVM is affected by the norm used to regularise the kernel weights to be learnt. Through experiments on three image/video classification datasets as well as on synthesised data, new insights are gained as to how the choice of regularisation norm should be made, especially when MK-SVM is applied to image/video classification problems.\",\"PeriodicalId\":417012,\"journal\":{\"name\":\"2009 Seventh International Workshop on Content-Based Multimedia Indexing\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Seventh International Workshop on Content-Based Multimedia Indexing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2009.44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Workshop on Content-Based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2009.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Comparison of L_1 Norm and L_2 Norm Multiple Kernel SVMs in Image and Video Classification
SVM is one of the state-of-the-art techniques for image and video classification. When multiple kernels are available, the recently introduced multiple kernel SVM (MK-SVM) learns an optimal linear combination of the kernels, providing a new method for information fusion. In this paper we study how the behaviour of MK-SVM is affected by the norm used to regularise the kernel weights to be learnt. Through experiments on three image/video classification datasets as well as on synthesised data, new insights are gained as to how the choice of regularisation norm should be made, especially when MK-SVM is applied to image/video classification problems.