A. Khrabry, A. Khodak, I. Kaganovich, Vladislav Vekselman, V. Nemchinsky
{"title":"纳米颗粒合成碳弧自洽数值模拟","authors":"A. Khrabry, A. Khodak, I. Kaganovich, Vladislav Vekselman, V. Nemchinsky","doi":"10.1109/PLASMA.2017.8496331","DOIUrl":null,"url":null,"abstract":"Self-consistent model of atmospheric pressure carbon arc discharge in helium atmosphere was developed in the framework of the nanoparticle synthesis project1 and implemented into the 3D CFD-code ANSYS CFX, which was highly customized for this purpose. Arc discharge model consists of fluid model for non-equilibrium plasma coupled with models of heat transfer in electrodes, ablation of anode, carbon deposition at cathode and space charge sheathes.","PeriodicalId":145705,"journal":{"name":"2017 IEEE International Conference on Plasma Science (ICOPS)","volume":"586 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Self-Consistent Numerical Simulation of Carbon Arc for Nanoparticle Synthesis\",\"authors\":\"A. Khrabry, A. Khodak, I. Kaganovich, Vladislav Vekselman, V. Nemchinsky\",\"doi\":\"10.1109/PLASMA.2017.8496331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Self-consistent model of atmospheric pressure carbon arc discharge in helium atmosphere was developed in the framework of the nanoparticle synthesis project1 and implemented into the 3D CFD-code ANSYS CFX, which was highly customized for this purpose. Arc discharge model consists of fluid model for non-equilibrium plasma coupled with models of heat transfer in electrodes, ablation of anode, carbon deposition at cathode and space charge sheathes.\",\"PeriodicalId\":145705,\"journal\":{\"name\":\"2017 IEEE International Conference on Plasma Science (ICOPS)\",\"volume\":\"586 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Plasma Science (ICOPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLASMA.2017.8496331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2017.8496331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Self-Consistent Numerical Simulation of Carbon Arc for Nanoparticle Synthesis
Self-consistent model of atmospheric pressure carbon arc discharge in helium atmosphere was developed in the framework of the nanoparticle synthesis project1 and implemented into the 3D CFD-code ANSYS CFX, which was highly customized for this purpose. Arc discharge model consists of fluid model for non-equilibrium plasma coupled with models of heat transfer in electrodes, ablation of anode, carbon deposition at cathode and space charge sheathes.