S. Nowoisky, M. Grzeszkowski, N. Mokhtari, Jonathan Pelham, C. Gühmann
{"title":"航空动力齿轮箱传动系统监测概念研究","authors":"S. Nowoisky, M. Grzeszkowski, N. Mokhtari, Jonathan Pelham, C. Gühmann","doi":"10.51202/9783181023556-269","DOIUrl":null,"url":null,"abstract":"Using a gearbox in a turbojet engine implies additional monitoring tasks due to new introduced failure modes. This paper outlines monitoring options to address technical diagnosis of the world’s most powerful aerospace gearbox. For this novel technology different monitoring options are assessed to enable the trade between technical effort and monitoring capability. In this paper options to monitor the gears and journal bearings are described. To detect gear wear, pitting, and gear teeth cracks the use of acceleration, acoustic emission sensors, and different methods will be assessed. First stage results are based on Back2Back test run results in occurring pitting and gear teeth loss [1]. The journal bearing mixed friction will be detected by the use of an acoustic emission sensor [3], [5]. Due to the location of the journal bearing in the rotating area of the gearbox a Wireless Data Transfer Unit (WDTU) must be introduced [6], [7]. Results of early subscale component test runs are used to define requirements to adjust the WDTU and accommodate the new power gearbox (PGB) requirements. The electronics of the WDTU must cope with challenges such as the environmental conditions of the gearbox. To extract the mixed friction pattern by the applied signal processing steps from the noise disturbance caused by gear mesh is a technical challenge. Finally the paper closes with a recommendation on how to monitor such a gearbox and provides an outlook to the next test campaign, where the WDTU will be applied based on a back2back configuration of a subscale planetary gearbox [8].","PeriodicalId":260409,"journal":{"name":"International Conference on Gears 2019","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Monitoring concept study for aerospace power gear box drive train\",\"authors\":\"S. Nowoisky, M. Grzeszkowski, N. Mokhtari, Jonathan Pelham, C. Gühmann\",\"doi\":\"10.51202/9783181023556-269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a gearbox in a turbojet engine implies additional monitoring tasks due to new introduced failure modes. This paper outlines monitoring options to address technical diagnosis of the world’s most powerful aerospace gearbox. For this novel technology different monitoring options are assessed to enable the trade between technical effort and monitoring capability. In this paper options to monitor the gears and journal bearings are described. To detect gear wear, pitting, and gear teeth cracks the use of acceleration, acoustic emission sensors, and different methods will be assessed. First stage results are based on Back2Back test run results in occurring pitting and gear teeth loss [1]. The journal bearing mixed friction will be detected by the use of an acoustic emission sensor [3], [5]. Due to the location of the journal bearing in the rotating area of the gearbox a Wireless Data Transfer Unit (WDTU) must be introduced [6], [7]. Results of early subscale component test runs are used to define requirements to adjust the WDTU and accommodate the new power gearbox (PGB) requirements. The electronics of the WDTU must cope with challenges such as the environmental conditions of the gearbox. To extract the mixed friction pattern by the applied signal processing steps from the noise disturbance caused by gear mesh is a technical challenge. Finally the paper closes with a recommendation on how to monitor such a gearbox and provides an outlook to the next test campaign, where the WDTU will be applied based on a back2back configuration of a subscale planetary gearbox [8].\",\"PeriodicalId\":260409,\"journal\":{\"name\":\"International Conference on Gears 2019\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Gears 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51202/9783181023556-269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Gears 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51202/9783181023556-269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monitoring concept study for aerospace power gear box drive train
Using a gearbox in a turbojet engine implies additional monitoring tasks due to new introduced failure modes. This paper outlines monitoring options to address technical diagnosis of the world’s most powerful aerospace gearbox. For this novel technology different monitoring options are assessed to enable the trade between technical effort and monitoring capability. In this paper options to monitor the gears and journal bearings are described. To detect gear wear, pitting, and gear teeth cracks the use of acceleration, acoustic emission sensors, and different methods will be assessed. First stage results are based on Back2Back test run results in occurring pitting and gear teeth loss [1]. The journal bearing mixed friction will be detected by the use of an acoustic emission sensor [3], [5]. Due to the location of the journal bearing in the rotating area of the gearbox a Wireless Data Transfer Unit (WDTU) must be introduced [6], [7]. Results of early subscale component test runs are used to define requirements to adjust the WDTU and accommodate the new power gearbox (PGB) requirements. The electronics of the WDTU must cope with challenges such as the environmental conditions of the gearbox. To extract the mixed friction pattern by the applied signal processing steps from the noise disturbance caused by gear mesh is a technical challenge. Finally the paper closes with a recommendation on how to monitor such a gearbox and provides an outlook to the next test campaign, where the WDTU will be applied based on a back2back configuration of a subscale planetary gearbox [8].