{"title":"为StarSS编程模型提供硬件任务管理支持的案例","authors":"C. Meenderinck, B. Juurlink","doi":"10.1109/DSD.2010.63","DOIUrl":null,"url":null,"abstract":"StarSS is a parallel programming model that eases the task of the programmer. He or she has to identify the tasks that can potentially be executed in parallel and the inputs and outputs of these tasks, while the runtime system takes care of the difficult issues of determining inter task dependencies, synchronization, load balancing, scheduling to optimize data locality, etc. Given these issues, however, the runtime system might become a bottleneck that limits the scalability of the system. The contribution of this paper is two-fold. First, we analyze the scalability of the current software runtime system for several synthetic benchmarks with different dependency patterns and task sizes. We show that for fine-grained tasks the system does not scale beyond five cores. Furthermore, we identify the main scalability bottlenecks of the runtime system. Second, we present the design of Nexus, a hardware support system for StarSS applications, that greatly reduces the task management overhead.","PeriodicalId":356885,"journal":{"name":"2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A Case for Hardware Task Management Support for the StarSS Programming Model\",\"authors\":\"C. Meenderinck, B. Juurlink\",\"doi\":\"10.1109/DSD.2010.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"StarSS is a parallel programming model that eases the task of the programmer. He or she has to identify the tasks that can potentially be executed in parallel and the inputs and outputs of these tasks, while the runtime system takes care of the difficult issues of determining inter task dependencies, synchronization, load balancing, scheduling to optimize data locality, etc. Given these issues, however, the runtime system might become a bottleneck that limits the scalability of the system. The contribution of this paper is two-fold. First, we analyze the scalability of the current software runtime system for several synthetic benchmarks with different dependency patterns and task sizes. We show that for fine-grained tasks the system does not scale beyond five cores. Furthermore, we identify the main scalability bottlenecks of the runtime system. Second, we present the design of Nexus, a hardware support system for StarSS applications, that greatly reduces the task management overhead.\",\"PeriodicalId\":356885,\"journal\":{\"name\":\"2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSD.2010.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD.2010.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Case for Hardware Task Management Support for the StarSS Programming Model
StarSS is a parallel programming model that eases the task of the programmer. He or she has to identify the tasks that can potentially be executed in parallel and the inputs and outputs of these tasks, while the runtime system takes care of the difficult issues of determining inter task dependencies, synchronization, load balancing, scheduling to optimize data locality, etc. Given these issues, however, the runtime system might become a bottleneck that limits the scalability of the system. The contribution of this paper is two-fold. First, we analyze the scalability of the current software runtime system for several synthetic benchmarks with different dependency patterns and task sizes. We show that for fine-grained tasks the system does not scale beyond five cores. Furthermore, we identify the main scalability bottlenecks of the runtime system. Second, we present the design of Nexus, a hardware support system for StarSS applications, that greatly reduces the task management overhead.