无导数估计的环境极值搜索移动机器人运动学导航

A. Matveev, Michael Hoy, A. Savkin
{"title":"无导数估计的环境极值搜索移动机器人运动学导航","authors":"A. Matveev, Michael Hoy, A. Savkin","doi":"10.1109/ICCA.2013.6564931","DOIUrl":null,"url":null,"abstract":"We consider a single kinematically controlled mobile robot traveling in a planar region supporting an unknown field distribution. A single sensor provides the distribution value at the current robot location. We present a new navigation strategy that drives the robot to the location where the field distribution attains its maximum. The proposed control algorithm employs estimation of neither the entire field gradient nor derivative-dependent quantities, like the rate at which the available measurement evolves over time, and is non-demanding with respect to both computation and motion. Its mathematically rigorous analysis and justification are provided. Simulation results confirm the applicability and performance of the proposed guidance approach.","PeriodicalId":336534,"journal":{"name":"2013 10th IEEE International Conference on Control and Automation (ICCA)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Kinematic navigation of a mobile robot for environmental extremum seeking without derivatives estimation\",\"authors\":\"A. Matveev, Michael Hoy, A. Savkin\",\"doi\":\"10.1109/ICCA.2013.6564931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a single kinematically controlled mobile robot traveling in a planar region supporting an unknown field distribution. A single sensor provides the distribution value at the current robot location. We present a new navigation strategy that drives the robot to the location where the field distribution attains its maximum. The proposed control algorithm employs estimation of neither the entire field gradient nor derivative-dependent quantities, like the rate at which the available measurement evolves over time, and is non-demanding with respect to both computation and motion. Its mathematically rigorous analysis and justification are provided. Simulation results confirm the applicability and performance of the proposed guidance approach.\",\"PeriodicalId\":336534,\"journal\":{\"name\":\"2013 10th IEEE International Conference on Control and Automation (ICCA)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th IEEE International Conference on Control and Automation (ICCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCA.2013.6564931\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th IEEE International Conference on Control and Automation (ICCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCA.2013.6564931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑一个单运动控制的移动机器人在一个平面区域支持未知的场分布。单个传感器提供当前机器人位置的分布值。我们提出了一种新的导航策略,驱动机器人到场分布达到最大的位置。所提出的控制算法既不使用整个场梯度的估计,也不使用导数相关量的估计,如可用测量随时间演变的速率,并且对计算和运动都没有要求。对其进行了严密的数学分析和论证。仿真结果验证了该制导方法的适用性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kinematic navigation of a mobile robot for environmental extremum seeking without derivatives estimation
We consider a single kinematically controlled mobile robot traveling in a planar region supporting an unknown field distribution. A single sensor provides the distribution value at the current robot location. We present a new navigation strategy that drives the robot to the location where the field distribution attains its maximum. The proposed control algorithm employs estimation of neither the entire field gradient nor derivative-dependent quantities, like the rate at which the available measurement evolves over time, and is non-demanding with respect to both computation and motion. Its mathematically rigorous analysis and justification are provided. Simulation results confirm the applicability and performance of the proposed guidance approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cooperative task planning for multiple autonomous UAVs with graph representation and genetic algorithm Real-time measure and control system of biped walking robot based on sensor Simultaneously scheduling production plan and maintenance policy for a single machine with failure uncertainty Fuzzy grey sliding mode control for maximum power point tracking of photovoltaic systems A data-driven approach for sensor fault diagnosis in gearbox of wind energy conversion system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1