核分割的自适应特征聚合网络

Ruizhe Geng, Zhongyi Huang, Jie Chen
{"title":"核分割的自适应特征聚合网络","authors":"Ruizhe Geng, Zhongyi Huang, Jie Chen","doi":"10.1145/3444685.3446271","DOIUrl":null,"url":null,"abstract":"Nuclei instance segmentation is essential for cell morphometrics and analysis, playing a crucial role in digital pathology. The problem of variability in nuclei characteristics among diverse cell types makes this task more challenging. Recently, proposal-based segmentation methods with feature pyramid network (FPN) has shown good performance because FPN integrates multi-scale features with strong semantics. However, FPN has information loss of the highest-level feature map and sub-optimal feature fusion strategies. This paper proposes a proposal-based adaptive feature aggregation methods (AANet) to make full use of multi-scale features. Specifically, AANet consists of two components: Context Augmentation Module (CAM) and Feature Adaptive Selection Module (ASM). In feature fusion, CAM focus on exploring extensive contextual information and capturing discriminative semantics to reduce the information loss of feature map at the highest pyramid level. The enhanced features are then sent to ASM to get a combined feature representation adaptively over all feature levels for each RoI. The experiments show our model's effectiveness on two publicly available datasets: the Kaggle 2018 Data Science Bowl dataset and the Multi-Organ nuclei segmentation dataset.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive feature aggregation network for nuclei segmentation\",\"authors\":\"Ruizhe Geng, Zhongyi Huang, Jie Chen\",\"doi\":\"10.1145/3444685.3446271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nuclei instance segmentation is essential for cell morphometrics and analysis, playing a crucial role in digital pathology. The problem of variability in nuclei characteristics among diverse cell types makes this task more challenging. Recently, proposal-based segmentation methods with feature pyramid network (FPN) has shown good performance because FPN integrates multi-scale features with strong semantics. However, FPN has information loss of the highest-level feature map and sub-optimal feature fusion strategies. This paper proposes a proposal-based adaptive feature aggregation methods (AANet) to make full use of multi-scale features. Specifically, AANet consists of two components: Context Augmentation Module (CAM) and Feature Adaptive Selection Module (ASM). In feature fusion, CAM focus on exploring extensive contextual information and capturing discriminative semantics to reduce the information loss of feature map at the highest pyramid level. The enhanced features are then sent to ASM to get a combined feature representation adaptively over all feature levels for each RoI. The experiments show our model's effectiveness on two publicly available datasets: the Kaggle 2018 Data Science Bowl dataset and the Multi-Organ nuclei segmentation dataset.\",\"PeriodicalId\":119278,\"journal\":{\"name\":\"Proceedings of the 2nd ACM International Conference on Multimedia in Asia\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd ACM International Conference on Multimedia in Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3444685.3446271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444685.3446271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞核实例分割是细胞形态计量学和分析的基础,在数字病理学中起着至关重要的作用。不同细胞类型的细胞核特征的可变性问题使这项任务更具挑战性。近年来,基于提议的特征金字塔网络(FPN)分割方法由于融合了多尺度特征,具有较强的语义特征,表现出了较好的分割效果。然而,FPN存在最高级特征映射的信息丢失和次优特征融合策略。为了充分利用多尺度特征,提出了一种基于提议的自适应特征聚合方法(AANet)。具体来说,AANet由两个部分组成:上下文增强模块(Context Augmentation Module, CAM)和特征自适应选择模块(Feature Adaptive Selection Module, ASM)。在特征融合中,CAM侧重于挖掘广泛的上下文信息和捕获判别语义,以减少最高金字塔层特征图的信息丢失。然后将增强的特征发送给ASM,以自适应地获得每个RoI的所有特征级别的组合特征表示。实验证明了我们的模型在两个公开可用的数据集上的有效性:Kaggle 2018数据科学碗数据集和多器官核分割数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adaptive feature aggregation network for nuclei segmentation
Nuclei instance segmentation is essential for cell morphometrics and analysis, playing a crucial role in digital pathology. The problem of variability in nuclei characteristics among diverse cell types makes this task more challenging. Recently, proposal-based segmentation methods with feature pyramid network (FPN) has shown good performance because FPN integrates multi-scale features with strong semantics. However, FPN has information loss of the highest-level feature map and sub-optimal feature fusion strategies. This paper proposes a proposal-based adaptive feature aggregation methods (AANet) to make full use of multi-scale features. Specifically, AANet consists of two components: Context Augmentation Module (CAM) and Feature Adaptive Selection Module (ASM). In feature fusion, CAM focus on exploring extensive contextual information and capturing discriminative semantics to reduce the information loss of feature map at the highest pyramid level. The enhanced features are then sent to ASM to get a combined feature representation adaptively over all feature levels for each RoI. The experiments show our model's effectiveness on two publicly available datasets: the Kaggle 2018 Data Science Bowl dataset and the Multi-Organ nuclei segmentation dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Storyboard relational model for group activity recognition Objective object segmentation visual quality evaluation based on pixel-level and region-level characteristics Multiplicative angular margin loss for text-based person search Distilling knowledge in causal inference for unbiased visual question answering A large-scale image retrieval system for everyday scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1