高光谱目标检测算法的硬件/软件实现

Dordije Boskovic, M. Orlandić, Sivert Bakken, T. Johansen
{"title":"高光谱目标检测算法的硬件/软件实现","authors":"Dordije Boskovic, M. Orlandić, Sivert Bakken, T. Johansen","doi":"10.1109/MECO.2019.8760108","DOIUrl":null,"url":null,"abstract":"Hyperspectral images obtained by imaging spectrometer contain a vast amount of data which require techniques such as target detection to extract useful information. This article presents an implementation of the target detection method Adaptive Cosine Estimator (ACE) for hyperspectral images. The algorithm is implemented as hardware-software partitioned system on Zynq-7000 development platform. The computationally intensive operations are accelerated on FPGA with the speedup factor of 28.54. The timing analysis presents results for the partitioned system as well as for the software implementation on Zynq processing system used for comparison. The detection performance of the implemented algorithm is tested and verified using publicly available hyperspectral scenes with ground truth data.","PeriodicalId":141324,"journal":{"name":"2019 8th Mediterranean Conference on Embedded Computing (MECO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"HW/SW Implementation of Hyperspectral Target Detection Algorithm\",\"authors\":\"Dordije Boskovic, M. Orlandić, Sivert Bakken, T. Johansen\",\"doi\":\"10.1109/MECO.2019.8760108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral images obtained by imaging spectrometer contain a vast amount of data which require techniques such as target detection to extract useful information. This article presents an implementation of the target detection method Adaptive Cosine Estimator (ACE) for hyperspectral images. The algorithm is implemented as hardware-software partitioned system on Zynq-7000 development platform. The computationally intensive operations are accelerated on FPGA with the speedup factor of 28.54. The timing analysis presents results for the partitioned system as well as for the software implementation on Zynq processing system used for comparison. The detection performance of the implemented algorithm is tested and verified using publicly available hyperspectral scenes with ground truth data.\",\"PeriodicalId\":141324,\"journal\":{\"name\":\"2019 8th Mediterranean Conference on Embedded Computing (MECO)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 8th Mediterranean Conference on Embedded Computing (MECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MECO.2019.8760108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO.2019.8760108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

成像光谱仪获得的高光谱图像包含大量的数据,需要目标检测等技术来提取有用的信息。提出了一种基于自适应余弦估计(ACE)的高光谱图像目标检测方法。该算法在Zynq-7000开发平台上以软硬件分区的方式实现。在FPGA上对计算密集型运算进行加速,加速系数为28.54。时序分析给出了分区系统的时序分析结果,以及用于比较的Zynq处理系统上的软件实现。使用公开可用的高光谱场景和地面真实数据对所实现算法的检测性能进行了测试和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HW/SW Implementation of Hyperspectral Target Detection Algorithm
Hyperspectral images obtained by imaging spectrometer contain a vast amount of data which require techniques such as target detection to extract useful information. This article presents an implementation of the target detection method Adaptive Cosine Estimator (ACE) for hyperspectral images. The algorithm is implemented as hardware-software partitioned system on Zynq-7000 development platform. The computationally intensive operations are accelerated on FPGA with the speedup factor of 28.54. The timing analysis presents results for the partitioned system as well as for the software implementation on Zynq processing system used for comparison. The detection performance of the implemented algorithm is tested and verified using publicly available hyperspectral scenes with ground truth data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
E-Learning Tool to Enhance Technological Pedagogical Content Knowledge A scalable Echo State Networks hardware generator for embedded systems using high-level synthesis Exploiting Task-based Parallelism in Application Loops E-health Card Information System: Case Study Health Insurance Fund of Montenegro Smart Universal Multifunctional Digital Terminal/Portal Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1