{"title":"一种具有跨模态集成与识别的智能上肢假肢","authors":"Qingsheng Meng, Zhijun Li, Junjun Li","doi":"10.1109/ICARM52023.2021.9536080","DOIUrl":null,"url":null,"abstract":"In this paper, we present a prosthetic system for humeral amputation patients. The design of neuro-prosthesis includes the remaining upper arm receiving cavity, forearm, wrist and five-fingered hand, which has 8 degrees of freedom driven by 8 actuators. The outline dimensions, structural design, dynamics system and motion control of the prosthetic system, as well as a crossmodal-based integration control method, which combines EMG signal, IMU signal, visual information and tactile information, are presented. The reliability of the state control of the inertial measurement unit is verified through simple task experiments. Results show our proposed method has a good manipulation performance. This work has a potential to improve the human-computer interaction experience with prosthesis.","PeriodicalId":367307,"journal":{"name":"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Intelligent Upper Limb Prosthesis with Crossmodal Integration and Recognition\",\"authors\":\"Qingsheng Meng, Zhijun Li, Junjun Li\",\"doi\":\"10.1109/ICARM52023.2021.9536080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a prosthetic system for humeral amputation patients. The design of neuro-prosthesis includes the remaining upper arm receiving cavity, forearm, wrist and five-fingered hand, which has 8 degrees of freedom driven by 8 actuators. The outline dimensions, structural design, dynamics system and motion control of the prosthetic system, as well as a crossmodal-based integration control method, which combines EMG signal, IMU signal, visual information and tactile information, are presented. The reliability of the state control of the inertial measurement unit is verified through simple task experiments. Results show our proposed method has a good manipulation performance. This work has a potential to improve the human-computer interaction experience with prosthesis.\",\"PeriodicalId\":367307,\"journal\":{\"name\":\"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARM52023.2021.9536080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARM52023.2021.9536080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Intelligent Upper Limb Prosthesis with Crossmodal Integration and Recognition
In this paper, we present a prosthetic system for humeral amputation patients. The design of neuro-prosthesis includes the remaining upper arm receiving cavity, forearm, wrist and five-fingered hand, which has 8 degrees of freedom driven by 8 actuators. The outline dimensions, structural design, dynamics system and motion control of the prosthetic system, as well as a crossmodal-based integration control method, which combines EMG signal, IMU signal, visual information and tactile information, are presented. The reliability of the state control of the inertial measurement unit is verified through simple task experiments. Results show our proposed method has a good manipulation performance. This work has a potential to improve the human-computer interaction experience with prosthesis.