基于人工神经网络的区域机场航空旅客需求估算:以泰国华欣机场为例

P. Srisaeng, Glenn Baxter, Parleda Sampaothong
{"title":"基于人工神经网络的区域机场航空旅客需求估算:以泰国华欣机场为例","authors":"P. Srisaeng, Glenn Baxter, Parleda Sampaothong","doi":"10.7708/ijtte2022.12(2).07","DOIUrl":null,"url":null,"abstract":": Artificial neural networks (ANNs) are a promising modelling approach for predicting an airport’s air passenger demand. The study proposed and empirically tested an artificial neural network model to predict the annual passenger demand for Huahin Airport, a regional and tourist focused airport located in Thailand. The ANN input variables included Thailand’s population size, Thailand’s real GDP, world jet fuel prices, Thailand total passengers carried, Thailand’s tourist numbers and Thailand’s unemployment rates. The data were trained using the Levenberg-Marquandt back-propagation algorithm. The ANN comprises eight neurons in the hidden layer and one neuron in the output layer. 80 per cent of the data was used in the training phase with the remaining data divided into validation (10 per cent) and testing (10 per cent) phases. The proposed ANN provided very accurate prediction values. The coefficient of determination R value of model was around 0.995, and the mean absolute percentage error (MAPE) of the final ANN model was 13.27%. The study found that the four key determinants of Huahin Airport annual air passenger demand were Thailand population size, the commencement of AirAsia services at Huahin Airport, Thailand’s tourist numbers, and Thailand’s real GDP.","PeriodicalId":117687,"journal":{"name":"International Journal for Traffic and Transport Engineering","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ESTIMATING A REGIONAL AIRPORT AIR PASSENGER DEMAND USING AN ARTIFICIAL NEURAL NETWORK APPROACH: THE CASE OF HUAHIN AIRPORT, THAILAND\",\"authors\":\"P. Srisaeng, Glenn Baxter, Parleda Sampaothong\",\"doi\":\"10.7708/ijtte2022.12(2).07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Artificial neural networks (ANNs) are a promising modelling approach for predicting an airport’s air passenger demand. The study proposed and empirically tested an artificial neural network model to predict the annual passenger demand for Huahin Airport, a regional and tourist focused airport located in Thailand. The ANN input variables included Thailand’s population size, Thailand’s real GDP, world jet fuel prices, Thailand total passengers carried, Thailand’s tourist numbers and Thailand’s unemployment rates. The data were trained using the Levenberg-Marquandt back-propagation algorithm. The ANN comprises eight neurons in the hidden layer and one neuron in the output layer. 80 per cent of the data was used in the training phase with the remaining data divided into validation (10 per cent) and testing (10 per cent) phases. The proposed ANN provided very accurate prediction values. The coefficient of determination R value of model was around 0.995, and the mean absolute percentage error (MAPE) of the final ANN model was 13.27%. The study found that the four key determinants of Huahin Airport annual air passenger demand were Thailand population size, the commencement of AirAsia services at Huahin Airport, Thailand’s tourist numbers, and Thailand’s real GDP.\",\"PeriodicalId\":117687,\"journal\":{\"name\":\"International Journal for Traffic and Transport Engineering\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Traffic and Transport Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7708/ijtte2022.12(2).07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Traffic and Transport Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7708/ijtte2022.12(2).07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

人工神经网络(ANNs)是预测机场航空旅客需求的一种很有前途的建模方法。本研究提出并实证检验了人工神经网络模型,以预测泰国华欣机场的年旅客需求。人工神经网络的输入变量包括泰国的人口规模、泰国的实际GDP、世界航空燃料价格、泰国的总乘客人数、泰国的游客人数和泰国的失业率。使用Levenberg-Marquandt反向传播算法对数据进行训练。该神经网络由隐藏层的8个神经元和输出层的1个神经元组成。80%的数据用于训练阶段,其余的数据分为验证阶段(10%)和测试阶段(10%)。所提出的人工神经网络提供了非常准确的预测值。模型的决定系数R值约为0.995,最终ANN模型的平均绝对百分比误差(MAPE)为13.27%。研究发现,华欣机场年航空旅客需求的四个关键决定因素是泰国人口规模、亚航在华欣机场服务的开始、泰国的游客数量和泰国的实际GDP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ESTIMATING A REGIONAL AIRPORT AIR PASSENGER DEMAND USING AN ARTIFICIAL NEURAL NETWORK APPROACH: THE CASE OF HUAHIN AIRPORT, THAILAND
: Artificial neural networks (ANNs) are a promising modelling approach for predicting an airport’s air passenger demand. The study proposed and empirically tested an artificial neural network model to predict the annual passenger demand for Huahin Airport, a regional and tourist focused airport located in Thailand. The ANN input variables included Thailand’s population size, Thailand’s real GDP, world jet fuel prices, Thailand total passengers carried, Thailand’s tourist numbers and Thailand’s unemployment rates. The data were trained using the Levenberg-Marquandt back-propagation algorithm. The ANN comprises eight neurons in the hidden layer and one neuron in the output layer. 80 per cent of the data was used in the training phase with the remaining data divided into validation (10 per cent) and testing (10 per cent) phases. The proposed ANN provided very accurate prediction values. The coefficient of determination R value of model was around 0.995, and the mean absolute percentage error (MAPE) of the final ANN model was 13.27%. The study found that the four key determinants of Huahin Airport annual air passenger demand were Thailand population size, the commencement of AirAsia services at Huahin Airport, Thailand’s tourist numbers, and Thailand’s real GDP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
THE USER PROFILING PROCESS RISK ANALYSIS OF SERVICE NETWORKS DISRUPTION IMPLEMENTATION OF MOBILE PARCEL LOCKERS IN DELIVERY SYSTEMS – ANALYSIS BY THE AHP APPROACH COMPARISON OF TRADITIONAL AND REINFORCEMENT LEARNING BASED ROUTING PROTOCOLS IN VANET SCENARIO PROTECTION OF TELECOMMUNICATION INFRASTRUCTURE USING IOT ECOSYSTEM OF TELEKOM SRBIJA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1