利用麻雀搜索机制改进水波算法

Haotian Li, Baohang Zhang, Jiayi Li, Tao Zheng, Haichuan Yang
{"title":"利用麻雀搜索机制改进水波算法","authors":"Haotian Li, Baohang Zhang, Jiayi Li, Tao Zheng, Haichuan Yang","doi":"10.1109/PIC53636.2021.9687028","DOIUrl":null,"url":null,"abstract":"The water wave optimization (WWO) algorithm is a new cluster intelligence search method. It has the advantages of a small population size and simple parameter configuration. It is used to build an efficient mechanism for searching in high-dimensional solution spaces. However, it has a proclivity for becoming stuck in local optima. Coincidentally, the sparrow search algorithm (SSA) has good exploration ability. By combining WWO and SSA, we propose a hybrid algorithm, called WWOSSA. The experimental results of the WWOSSA algorithm based on 29 benchmark functions of IEEE CEC2017 have good optimization ability and a fast convergence rate.","PeriodicalId":297239,"journal":{"name":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Using Sparrow Search Hunting Mechanism to Improve Water Wave Algorithm\",\"authors\":\"Haotian Li, Baohang Zhang, Jiayi Li, Tao Zheng, Haichuan Yang\",\"doi\":\"10.1109/PIC53636.2021.9687028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The water wave optimization (WWO) algorithm is a new cluster intelligence search method. It has the advantages of a small population size and simple parameter configuration. It is used to build an efficient mechanism for searching in high-dimensional solution spaces. However, it has a proclivity for becoming stuck in local optima. Coincidentally, the sparrow search algorithm (SSA) has good exploration ability. By combining WWO and SSA, we propose a hybrid algorithm, called WWOSSA. The experimental results of the WWOSSA algorithm based on 29 benchmark functions of IEEE CEC2017 have good optimization ability and a fast convergence rate.\",\"PeriodicalId\":297239,\"journal\":{\"name\":\"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIC53636.2021.9687028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC53636.2021.9687028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

水波优化算法是一种新的聚类智能搜索方法。它具有人口规模小、参数配置简单等优点。它被用来建立一种高效的高维解空间搜索机制。然而,它有陷入局部最优状态的倾向。无独有偶,麻雀搜索算法(SSA)具有良好的搜索能力。将WWO算法与SSA算法相结合,提出了一种混合算法,称为WWOSSA。基于IEEE CEC2017的29个基准函数的WWOSSA算法的实验结果表明,该算法具有良好的优化能力和较快的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Sparrow Search Hunting Mechanism to Improve Water Wave Algorithm
The water wave optimization (WWO) algorithm is a new cluster intelligence search method. It has the advantages of a small population size and simple parameter configuration. It is used to build an efficient mechanism for searching in high-dimensional solution spaces. However, it has a proclivity for becoming stuck in local optima. Coincidentally, the sparrow search algorithm (SSA) has good exploration ability. By combining WWO and SSA, we propose a hybrid algorithm, called WWOSSA. The experimental results of the WWOSSA algorithm based on 29 benchmark functions of IEEE CEC2017 have good optimization ability and a fast convergence rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Construction of Learning Diagnosis and Resources Recommendation System Based on Knowledge Graph Classification of Masonry Bricks Using Convolutional Neural Networks – a Case Study in a University-Industry Collaboration Project Optimal Scale Combinations Selection for Incomplete Generalized Multi-scale Decision Systems Application of Improved YOLOV4 in Intelligent Driving Scenarios Research on Hierarchical Clustering Undersampling and Random Forest Fusion Classification Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1