使用基于copula的Renyi和Tsallis散度度量的非参数独立性检验

M. Mohammadi, Mahdi Emadi
{"title":"使用基于copula的Renyi和Tsallis散度度量的非参数独立性检验","authors":"M. Mohammadi, Mahdi Emadi","doi":"10.19139/soic-2310-5070-1691","DOIUrl":null,"url":null,"abstract":"‎We introduce new nonparametric independence tests based on R\\'enyi and Tsallis divergence measures and copula density function‎. ‎These tests reduce the complexity of calculations because they only depend on the copula density‎. ‎The copula density estimated using the local likelihood probit-transformation method is appropriate for the identification of independence‎. ‎Also‎, ‎we present the consistency of the copula-based R\\'enyi and Tsallis divergence measures estimators that are considered as test statistics‎. ‎A simulation study is provided to compare the empirical power of these new tests with the independence test based on the empirical copula‎. ‎The simulation results show that the suggested tests outperform in weak dependency‎. ‎Finally‎, ‎an application in hydrology is presented‎.","PeriodicalId":131002,"journal":{"name":"Statistics, Optimization & Information Computing","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonparametric tests of independence using copula-based Renyi and Tsallis divergence measures\",\"authors\":\"M. Mohammadi, Mahdi Emadi\",\"doi\":\"10.19139/soic-2310-5070-1691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"‎We introduce new nonparametric independence tests based on R\\\\'enyi and Tsallis divergence measures and copula density function‎. ‎These tests reduce the complexity of calculations because they only depend on the copula density‎. ‎The copula density estimated using the local likelihood probit-transformation method is appropriate for the identification of independence‎. ‎Also‎, ‎we present the consistency of the copula-based R\\\\'enyi and Tsallis divergence measures estimators that are considered as test statistics‎. ‎A simulation study is provided to compare the empirical power of these new tests with the independence test based on the empirical copula‎. ‎The simulation results show that the suggested tests outperform in weak dependency‎. ‎Finally‎, ‎an application in hydrology is presented‎.\",\"PeriodicalId\":131002,\"journal\":{\"name\":\"Statistics, Optimization & Information Computing\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, Optimization & Information Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-1691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, Optimization & Information Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了新的基于R\ enyi和Tsallis散度测度和copula密度函数的非参数独立性检验。这些测试降低了计算的复杂性,因为它们只依赖于联结密度。使用局部似然概率变换方法估计的联结密度适合于独立性的识别。此外,我们提出了基于copula的R\ enyi和Tsallis散度度量估计量的一致性,这些估计量被认为是检验统计量。通过仿真研究,将这些新检验的经验威力与基于经验联结的独立性检验进行了比较。仿真结果表明,所提出的测试方法在弱依赖性方面表现优异。最后,介绍了在水文学中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonparametric tests of independence using copula-based Renyi and Tsallis divergence measures
‎We introduce new nonparametric independence tests based on R\'enyi and Tsallis divergence measures and copula density function‎. ‎These tests reduce the complexity of calculations because they only depend on the copula density‎. ‎The copula density estimated using the local likelihood probit-transformation method is appropriate for the identification of independence‎. ‎Also‎, ‎we present the consistency of the copula-based R\'enyi and Tsallis divergence measures estimators that are considered as test statistics‎. ‎A simulation study is provided to compare the empirical power of these new tests with the independence test based on the empirical copula‎. ‎The simulation results show that the suggested tests outperform in weak dependency‎. ‎Finally‎, ‎an application in hydrology is presented‎.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-depth Analysis of von Mises Distribution Models: Understanding Theory, Applications, and Future Directions Bayesian and Non-Bayesian Estimation for The Parameter of Inverted Topp-Leone Distribution Based on Progressive Type I Censoring Comparative Evaluation of Imbalanced Data Management Techniques for Solving Classification Problems on Imbalanced Datasets An Algorithm for Solving Quadratic Programming Problems with an M-matrix An Effective Randomized Algorithm for Hyperspectral Image Feature Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1