基于元胞自动机规则的粒子群算法边缘检测

D. Dumitru, A. Andreica, L. Dioşan, Z. Bálint
{"title":"基于元胞自动机规则的粒子群算法边缘检测","authors":"D. Dumitru, A. Andreica, L. Dioşan, Z. Bálint","doi":"10.1109/SYNASC49474.2019.00052","DOIUrl":null,"url":null,"abstract":"Cellular automata have been widely used for solving the edge detection problem. This paper proposes an algorithm which optimizes cellular automata rules using Particle Swarm Optimization based on an existing method in the literature. Moreover, the method is extended from grayscale to colour images by performing the optimization on each colour channel individually. A discussion on choosing the proper fitness function as well as comparative results with respect to the state-of-the-art are presented. As our algorithm is comparable to the Canny and Sobel edge detectors, it could be used in image segmentation tasks as a subroutine for edge detection.","PeriodicalId":102054,"journal":{"name":"2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"12 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Particle Swarm Optimization of Cellular Automata Rules for Edge Detection\",\"authors\":\"D. Dumitru, A. Andreica, L. Dioşan, Z. Bálint\",\"doi\":\"10.1109/SYNASC49474.2019.00052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cellular automata have been widely used for solving the edge detection problem. This paper proposes an algorithm which optimizes cellular automata rules using Particle Swarm Optimization based on an existing method in the literature. Moreover, the method is extended from grayscale to colour images by performing the optimization on each colour channel individually. A discussion on choosing the proper fitness function as well as comparative results with respect to the state-of-the-art are presented. As our algorithm is comparable to the Canny and Sobel edge detectors, it could be used in image segmentation tasks as a subroutine for edge detection.\",\"PeriodicalId\":102054,\"journal\":{\"name\":\"2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"12 4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC49474.2019.00052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 21st International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC49474.2019.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

元胞自动机已被广泛用于解决边缘检测问题。本文在已有文献的基础上,提出了一种基于粒子群算法的元胞自动机规则优化算法。此外,通过对每个颜色通道分别进行优化,将该方法从灰度图像扩展到彩色图像。讨论了如何选择合适的适应度函数,并给出了比较结果。由于我们的算法可与Canny和Sobel边缘检测器相媲美,因此它可以作为边缘检测的子程序用于图像分割任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Particle Swarm Optimization of Cellular Automata Rules for Edge Detection
Cellular automata have been widely used for solving the edge detection problem. This paper proposes an algorithm which optimizes cellular automata rules using Particle Swarm Optimization based on an existing method in the literature. Moreover, the method is extended from grayscale to colour images by performing the optimization on each colour channel individually. A discussion on choosing the proper fitness function as well as comparative results with respect to the state-of-the-art are presented. As our algorithm is comparable to the Canny and Sobel edge detectors, it could be used in image segmentation tasks as a subroutine for edge detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Superposition Reasoning about Quantified Bitvector Formulas Improving Detection of Malicious Office Documents Using One-Side Classifiers An Attempt to Enhance Buchberger's Algorithm by Using Remainder Sequences and GCD Operation Multi-Control Virtual Reality Driving Simulator [Title page iii]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1