用于肾脏DCE-MRI研究中GFR估计的人工神经网络

M. Strzelecki, A. Klepaczko, Martyna Muszelska, E. Eikefjord, J. Rørvik, A. Lundervold
{"title":"用于肾脏DCE-MRI研究中GFR估计的人工神经网络","authors":"M. Strzelecki, A. Klepaczko, Martyna Muszelska, E. Eikefjord, J. Rørvik, A. Lundervold","doi":"10.23919/SPA.2018.8563412","DOIUrl":null,"url":null,"abstract":"The dynamic contrast-enhanced magnetic resonance imaging is a diagnostic method directed at estimation of renal performance. Analysis of the image intensity time-courses in the renal cortex and parenchyma enables quantification of the kidney filtration characteristics. A standard approach used for that purpose involves fitting a pharmacokinetic model to image data and optimizing a set of model parameters. It is essentially a multi-objective and non-linear optimization problem. Standard methods applied in such scenarios include nonlinear least-squares (NLS) algorithms, such as Levenberg-Marquardt or Trust Region Reflective methods. The major disadvantage of these classical approaches is the requirement for determining the starting point of the optimization, whose final result is a local minimum of the objective function. On the contrary, artificial neural networks (ANN) are trained based on a large range of parameter combinations, potentially covering whole solution space. Thus, they appear particularly useful in fitting complex, non-linear, multi-parametric relationships to the observed noisy data and offer greater ability to detect all possible interactions between predictor variables without the need for explicit statistical formulation. In this paper we compare the ANN and NLS approaches in application to measuring perfusion based on DCE-MR images. The experiments performed on a dataset containing 10 dynamic image series collected for 5 healthy volunteers proved superior performance of the neural networks over classical methods in terms of quantifying true perfusion parameters, robustness to noise and varying imaging conditions.","PeriodicalId":265587,"journal":{"name":"2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An artificial neural network for GFR estimation in the DCE-MRI studies of the kidneys\",\"authors\":\"M. Strzelecki, A. Klepaczko, Martyna Muszelska, E. Eikefjord, J. Rørvik, A. Lundervold\",\"doi\":\"10.23919/SPA.2018.8563412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamic contrast-enhanced magnetic resonance imaging is a diagnostic method directed at estimation of renal performance. Analysis of the image intensity time-courses in the renal cortex and parenchyma enables quantification of the kidney filtration characteristics. A standard approach used for that purpose involves fitting a pharmacokinetic model to image data and optimizing a set of model parameters. It is essentially a multi-objective and non-linear optimization problem. Standard methods applied in such scenarios include nonlinear least-squares (NLS) algorithms, such as Levenberg-Marquardt or Trust Region Reflective methods. The major disadvantage of these classical approaches is the requirement for determining the starting point of the optimization, whose final result is a local minimum of the objective function. On the contrary, artificial neural networks (ANN) are trained based on a large range of parameter combinations, potentially covering whole solution space. Thus, they appear particularly useful in fitting complex, non-linear, multi-parametric relationships to the observed noisy data and offer greater ability to detect all possible interactions between predictor variables without the need for explicit statistical formulation. In this paper we compare the ANN and NLS approaches in application to measuring perfusion based on DCE-MR images. The experiments performed on a dataset containing 10 dynamic image series collected for 5 healthy volunteers proved superior performance of the neural networks over classical methods in terms of quantifying true perfusion parameters, robustness to noise and varying imaging conditions.\",\"PeriodicalId\":265587,\"journal\":{\"name\":\"2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SPA.2018.8563412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SPA.2018.8563412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动态对比增强磁共振成像是一种诊断方法,旨在估计肾脏的表现。分析肾皮质和实质的图像强度时程可以量化肾脏滤过特性。用于此目的的标准方法包括将药代动力学模型拟合到图像数据并优化一组模型参数。它本质上是一个多目标非线性优化问题。在这种情况下应用的标准方法包括非线性最小二乘(NLS)算法,如Levenberg-Marquardt或Trust Region Reflective方法。这些经典方法的主要缺点是需要确定优化的起始点,其最终结果是目标函数的局部最小值。相反,人工神经网络(ANN)是基于大范围的参数组合来训练的,有可能覆盖整个解空间。因此,它们在拟合观察到的噪声数据的复杂、非线性、多参数关系方面显得特别有用,并且在不需要显式统计公式的情况下,提供了更大的能力来检测预测变量之间所有可能的相互作用。在本文中,我们比较了ANN和NLS方法在DCE-MR图像灌注测量中的应用。在包含5名健康志愿者的10个动态图像序列数据集上进行的实验证明,神经网络在量化真实灌注参数、对噪声的鲁棒性和不同成像条件方面优于经典方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An artificial neural network for GFR estimation in the DCE-MRI studies of the kidneys
The dynamic contrast-enhanced magnetic resonance imaging is a diagnostic method directed at estimation of renal performance. Analysis of the image intensity time-courses in the renal cortex and parenchyma enables quantification of the kidney filtration characteristics. A standard approach used for that purpose involves fitting a pharmacokinetic model to image data and optimizing a set of model parameters. It is essentially a multi-objective and non-linear optimization problem. Standard methods applied in such scenarios include nonlinear least-squares (NLS) algorithms, such as Levenberg-Marquardt or Trust Region Reflective methods. The major disadvantage of these classical approaches is the requirement for determining the starting point of the optimization, whose final result is a local minimum of the objective function. On the contrary, artificial neural networks (ANN) are trained based on a large range of parameter combinations, potentially covering whole solution space. Thus, they appear particularly useful in fitting complex, non-linear, multi-parametric relationships to the observed noisy data and offer greater ability to detect all possible interactions between predictor variables without the need for explicit statistical formulation. In this paper we compare the ANN and NLS approaches in application to measuring perfusion based on DCE-MR images. The experiments performed on a dataset containing 10 dynamic image series collected for 5 healthy volunteers proved superior performance of the neural networks over classical methods in terms of quantifying true perfusion parameters, robustness to noise and varying imaging conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Vehicle detector training with labels derived from background subtraction algorithms in video surveillance Automatic 3D segmentation of MRI data for detection of head and neck cancerous lymph nodes Centerline-Radius Polygonal-Mesh Modeling of Bifurcated Blood Vessels in 3D Images using Conformal Mapping Active elimination of tonal components in acoustic signals An adaptive transmission algorithm for an inertial motion capture system in the aspect of energy saving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1