基于生物信号的应力检测决策树优化SVM模型

Alana Paul Cruz, A. Pradeep, Kavali Riya Sivasankar, K.S Krishnaveni
{"title":"基于生物信号的应力检测决策树优化SVM模型","authors":"Alana Paul Cruz, A. Pradeep, Kavali Riya Sivasankar, K.S Krishnaveni","doi":"10.1109/ICCSP48568.2020.9182043","DOIUrl":null,"url":null,"abstract":"In our work we propose a machine learning model based on human bio signals to detect human stress. Detecting stress properly can help in preventing a large number of mental and physical scenarios which lead to abnormalities in cardiac rhythm or depression and more. In our work we selected ECG as the bio signal and extracted its features. The advantage of taking ECG as the bio signal is, information about respiratory signals EDR (ECG Derived Respiration) feature can be easily derived without any extra sensors. Among those unique features we chose ECG derived Respiration, Respiration Rate, QT interval. For training and validation of our new model we used Physionet’s “drivedb” database. Our proposed model uses Optimised Support Vector Machines (SVM) using decision trees. Our experimentation results show better accuracy in detecting stress","PeriodicalId":321133,"journal":{"name":"2020 International Conference on Communication and Signal Processing (ICCSP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A Decision Tree Optimised SVM Model for Stress Detection using Biosignals\",\"authors\":\"Alana Paul Cruz, A. Pradeep, Kavali Riya Sivasankar, K.S Krishnaveni\",\"doi\":\"10.1109/ICCSP48568.2020.9182043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our work we propose a machine learning model based on human bio signals to detect human stress. Detecting stress properly can help in preventing a large number of mental and physical scenarios which lead to abnormalities in cardiac rhythm or depression and more. In our work we selected ECG as the bio signal and extracted its features. The advantage of taking ECG as the bio signal is, information about respiratory signals EDR (ECG Derived Respiration) feature can be easily derived without any extra sensors. Among those unique features we chose ECG derived Respiration, Respiration Rate, QT interval. For training and validation of our new model we used Physionet’s “drivedb” database. Our proposed model uses Optimised Support Vector Machines (SVM) using decision trees. Our experimentation results show better accuracy in detecting stress\",\"PeriodicalId\":321133,\"journal\":{\"name\":\"2020 International Conference on Communication and Signal Processing (ICCSP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Communication and Signal Processing (ICCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSP48568.2020.9182043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Communication and Signal Processing (ICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP48568.2020.9182043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在我们的工作中,我们提出了一种基于人类生物信号的机器学习模型来检测人类的压力。适当地检测压力可以帮助预防大量导致心律异常或抑郁等的精神和身体状况。在我们的工作中,我们选择心电作为生物信号并提取其特征。以心电作为生物信号的优点是,无需额外的传感器即可轻松地获得呼吸信号的EDR (ECG Derived Respiration)特征信息。在这些独特的特征中,我们选择了ECG衍生呼吸,呼吸速率,QT间期。为了训练和验证我们的新模型,我们使用了Physionet的“drivedb”数据库。我们提出的模型使用决策树的优化支持向量机(SVM)。实验结果表明,该方法具有较好的应力检测精度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Decision Tree Optimised SVM Model for Stress Detection using Biosignals
In our work we propose a machine learning model based on human bio signals to detect human stress. Detecting stress properly can help in preventing a large number of mental and physical scenarios which lead to abnormalities in cardiac rhythm or depression and more. In our work we selected ECG as the bio signal and extracted its features. The advantage of taking ECG as the bio signal is, information about respiratory signals EDR (ECG Derived Respiration) feature can be easily derived without any extra sensors. Among those unique features we chose ECG derived Respiration, Respiration Rate, QT interval. For training and validation of our new model we used Physionet’s “drivedb” database. Our proposed model uses Optimised Support Vector Machines (SVM) using decision trees. Our experimentation results show better accuracy in detecting stress
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Acoustic Scene Classification in Hearing aid using Deep Learning Plant Disease Detection and Recognition using K means Clustering THD Reduction in Execution of A Nine Level Single Phase Inverter Analysis of Heel Fissure Therapy using Thermal Imaging and Image Processing Malicious Application Detection in Android using Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1