一种用于ROI中人体动作识别的紧凑三维描述符

Yanli Ji, Atsushi Shimada, R. Taniguchi
{"title":"一种用于ROI中人体动作识别的紧凑三维描述符","authors":"Yanli Ji, Atsushi Shimada, R. Taniguchi","doi":"10.1109/TENCON.2010.5686694","DOIUrl":null,"url":null,"abstract":"In this paper, a new action recognition system is proposed, which employs 3D FAST corner detection in ROI, compact 3D descriptor to represent action information, and SOM to learn and recognize actions. Through detecting 3D FAST corners in ROI, action information of shape and motion can be obtained, and noise corners can be deleted at the same time. Furthermore, based on 3D HOG, we produce a simpler descriptor which is proposed by shortening the support region of interest points, combining symmetric bins after orientation quantization using icosahedron, and keeping the top value bin of quantized histogram. Compared with the descriptor before adjustment, our descriptor uses only 80 bins other than 960 bins to describe one interest point, which saves much computation time and memory. Our frame matching experiment on descriptor also certifies that our descriptor outperforms the previous one. Our descriptor is applied to recognize actions on KTH and Hollywood databases, and the results show that it performs well.","PeriodicalId":101683,"journal":{"name":"TENCON 2010 - 2010 IEEE Region 10 Conference","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A compact 3D descriptor in ROI for human action recognition\",\"authors\":\"Yanli Ji, Atsushi Shimada, R. Taniguchi\",\"doi\":\"10.1109/TENCON.2010.5686694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new action recognition system is proposed, which employs 3D FAST corner detection in ROI, compact 3D descriptor to represent action information, and SOM to learn and recognize actions. Through detecting 3D FAST corners in ROI, action information of shape and motion can be obtained, and noise corners can be deleted at the same time. Furthermore, based on 3D HOG, we produce a simpler descriptor which is proposed by shortening the support region of interest points, combining symmetric bins after orientation quantization using icosahedron, and keeping the top value bin of quantized histogram. Compared with the descriptor before adjustment, our descriptor uses only 80 bins other than 960 bins to describe one interest point, which saves much computation time and memory. Our frame matching experiment on descriptor also certifies that our descriptor outperforms the previous one. Our descriptor is applied to recognize actions on KTH and Hollywood databases, and the results show that it performs well.\",\"PeriodicalId\":101683,\"journal\":{\"name\":\"TENCON 2010 - 2010 IEEE Region 10 Conference\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TENCON 2010 - 2010 IEEE Region 10 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON.2010.5686694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TENCON 2010 - 2010 IEEE Region 10 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON.2010.5686694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种新的动作识别系统,该系统采用ROI中的3D FAST角点检测,紧凑的三维描述符来表示动作信息,SOM来学习和识别动作。通过检测ROI中的3D FAST角,可以获得形状和运动的动作信息,同时可以消除噪声角。在三维HOG的基础上,通过缩短兴趣点的支持区域,结合二十面体方向量化后的对称箱,保留量化直方图的顶值箱,提出了一种更简单的描述符。与调整前的描述符相比,我们的描述符只使用了80个bin而不是960个bin来描述一个兴趣点,节省了大量的计算时间和内存。我们在描述符上的帧匹配实验也证明了我们的描述符优于之前的描述符。将描述符应用于KTH和Hollywood数据库上的动作识别,结果表明该描述符具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A compact 3D descriptor in ROI for human action recognition
In this paper, a new action recognition system is proposed, which employs 3D FAST corner detection in ROI, compact 3D descriptor to represent action information, and SOM to learn and recognize actions. Through detecting 3D FAST corners in ROI, action information of shape and motion can be obtained, and noise corners can be deleted at the same time. Furthermore, based on 3D HOG, we produce a simpler descriptor which is proposed by shortening the support region of interest points, combining symmetric bins after orientation quantization using icosahedron, and keeping the top value bin of quantized histogram. Compared with the descriptor before adjustment, our descriptor uses only 80 bins other than 960 bins to describe one interest point, which saves much computation time and memory. Our frame matching experiment on descriptor also certifies that our descriptor outperforms the previous one. Our descriptor is applied to recognize actions on KTH and Hollywood databases, and the results show that it performs well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Change of EEG activity by repetitive Transcranial Magnetic Stimulation Study of SVC traffic multicast over WiMAX network Grain filtering in MILC and its impact on performance of n- and p-channel TFTs Dependence of magnetization switching property with microwave assistance on anisotropy field for ECC nano-pillar A compact 3D descriptor in ROI for human action recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1