{"title":"理解全地球碳循环的框架","authors":"Cin-Ty A. Lee, Hehe Jiang, R. Dasgupta, M. Torres","doi":"10.1017/9781108677950.011","DOIUrl":null,"url":null,"abstract":"increasing the sensitivity of the global weathering feedback (states a to b), which buffers the rise of pCO 2 . After magmatism ends, physical and chemical weathering persist, driving pCO 2 to low levels. Magmatic orogens can potentially drive greenhouses, but are followed by global cooling due to protracted weathering.","PeriodicalId":146724,"journal":{"name":"Deep Carbon","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"A Framework for Understanding Whole-Earth Carbon Cycling\",\"authors\":\"Cin-Ty A. Lee, Hehe Jiang, R. Dasgupta, M. Torres\",\"doi\":\"10.1017/9781108677950.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"increasing the sensitivity of the global weathering feedback (states a to b), which buffers the rise of pCO 2 . After magmatism ends, physical and chemical weathering persist, driving pCO 2 to low levels. Magmatic orogens can potentially drive greenhouses, but are followed by global cooling due to protracted weathering.\",\"PeriodicalId\":146724,\"journal\":{\"name\":\"Deep Carbon\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Deep Carbon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/9781108677950.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deep Carbon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/9781108677950.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Framework for Understanding Whole-Earth Carbon Cycling
increasing the sensitivity of the global weathering feedback (states a to b), which buffers the rise of pCO 2 . After magmatism ends, physical and chemical weathering persist, driving pCO 2 to low levels. Magmatic orogens can potentially drive greenhouses, but are followed by global cooling due to protracted weathering.