{"title":"用非线性量子理论计算ch3cn分子的高激发振动能级","authors":"Zhu Jun, Gou Qing-Quan","doi":"10.1088/1004-423X/8/6/005","DOIUrl":null,"url":null,"abstract":"A three-parameter nonlinear dynamical model, i.e., the quantized discrete self-trapping equation, was used to calculate the highly excited CH stretching vibrational energy levels of liquid phase CH3CN molecule in the electronic ground state up to n=7. The calculated results show that the experimental energy levels can be well described by the model.","PeriodicalId":188146,"journal":{"name":"Acta Physica Sinica (overseas Edition)","volume":"171 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CALCULATION OF HIGHLY EXCITED VIBRATIONAL ENERGY LEVELS OF CH 3 CN MOLECULE BY NON-LINEAR QUANTUM THEORY\",\"authors\":\"Zhu Jun, Gou Qing-Quan\",\"doi\":\"10.1088/1004-423X/8/6/005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A three-parameter nonlinear dynamical model, i.e., the quantized discrete self-trapping equation, was used to calculate the highly excited CH stretching vibrational energy levels of liquid phase CH3CN molecule in the electronic ground state up to n=7. The calculated results show that the experimental energy levels can be well described by the model.\",\"PeriodicalId\":188146,\"journal\":{\"name\":\"Acta Physica Sinica (overseas Edition)\",\"volume\":\"171 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physica Sinica (overseas Edition)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1004-423X/8/6/005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Sinica (overseas Edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1004-423X/8/6/005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CALCULATION OF HIGHLY EXCITED VIBRATIONAL ENERGY LEVELS OF CH 3 CN MOLECULE BY NON-LINEAR QUANTUM THEORY
A three-parameter nonlinear dynamical model, i.e., the quantized discrete self-trapping equation, was used to calculate the highly excited CH stretching vibrational energy levels of liquid phase CH3CN molecule in the electronic ground state up to n=7. The calculated results show that the experimental energy levels can be well described by the model.