旋转圆盘上对流不稳定性与全局不稳定性的关系

Lee Keunseob, N. Yu, Izawa Seiichiro, F. Yu
{"title":"旋转圆盘上对流不稳定性与全局不稳定性的关系","authors":"Lee Keunseob, N. Yu, Izawa Seiichiro, F. Yu","doi":"10.2174/1874155X01812010037","DOIUrl":null,"url":null,"abstract":"Results: A disturbance is continuatively introduced to excite the convectively unstable mode, which successfully generates a flow field with 32 spiral and stationary vortices. Next, a short-duration artificial disturbance with an azimuthal wavenumber of 64 is introduced at Reynolds number of 530 in order to introduce a velocity fluctuation of the traveling mode, which is globally unstable. It is shown that the source of vibration for the globally unstable mode exists between Reynolds number of 560 and 670. Finally, the global and traveling wavenumber 64 component is excited in a flow field which is dominated by the convective and stationary wavenumber 32 component. It is shown that the wavenumber 64 component grows by the global instability even when the excitation is very weak.","PeriodicalId":267392,"journal":{"name":"The Open Mechanical Engineering Journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relation Between Convective Instability and Global Instability on a Rotating Disk\",\"authors\":\"Lee Keunseob, N. Yu, Izawa Seiichiro, F. Yu\",\"doi\":\"10.2174/1874155X01812010037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Results: A disturbance is continuatively introduced to excite the convectively unstable mode, which successfully generates a flow field with 32 spiral and stationary vortices. Next, a short-duration artificial disturbance with an azimuthal wavenumber of 64 is introduced at Reynolds number of 530 in order to introduce a velocity fluctuation of the traveling mode, which is globally unstable. It is shown that the source of vibration for the globally unstable mode exists between Reynolds number of 560 and 670. Finally, the global and traveling wavenumber 64 component is excited in a flow field which is dominated by the convective and stationary wavenumber 32 component. It is shown that the wavenumber 64 component grows by the global instability even when the excitation is very weak.\",\"PeriodicalId\":267392,\"journal\":{\"name\":\"The Open Mechanical Engineering Journal\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Open Mechanical Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874155X01812010037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Mechanical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874155X01812010037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结果:连续引入扰动激发对流不稳定模态,成功地产生了32个螺旋涡和静止涡的流场。其次,在雷诺数为530时,引入方位角波数为64的短持续人为扰动,以引入全局不稳定的行模速度波动。结果表明,全局不稳定模态的振动源存在于雷诺数560 ~ 670之间。最后,在以对流和平稳波数32分量为主的流场中激发全局和行波数64分量。结果表明,即使在激励很弱的情况下,波数64分量也会随着全局不稳定性而增大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Relation Between Convective Instability and Global Instability on a Rotating Disk
Results: A disturbance is continuatively introduced to excite the convectively unstable mode, which successfully generates a flow field with 32 spiral and stationary vortices. Next, a short-duration artificial disturbance with an azimuthal wavenumber of 64 is introduced at Reynolds number of 530 in order to introduce a velocity fluctuation of the traveling mode, which is globally unstable. It is shown that the source of vibration for the globally unstable mode exists between Reynolds number of 560 and 670. Finally, the global and traveling wavenumber 64 component is excited in a flow field which is dominated by the convective and stationary wavenumber 32 component. It is shown that the wavenumber 64 component grows by the global instability even when the excitation is very weak.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wear and Corrosion Resistance of Hardened Fe-Al-Mn Grinding Ball Revised Lewis Bending Stress Capacity Model The Efficient and Tentative Model for Extenics Replications of the Moveable Robots Controllable Magnetoactive Polymer Conduit Experimental Studying of the Variations of Surface Roughness and Dimensional Accuracy in Dry Hard Turning Operation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1