{"title":"海报:BigBus:一个可扩展的光互连","authors":"E. Peter, Janibul Bashir, S. Sarangi","doi":"10.1109/PACT.2017.18","DOIUrl":null,"url":null,"abstract":"This paper presents BigBus, a novel on-chip photonic network for a 1024 node system. The crux of the idea is to segment the entire system into smaller clusters of nodes, and adopt a hybrid strategy for each segment that includes conventional laser modulation, as well as a novel technique for sharing power across nodes dynamically. We represent energy internally as tokens, where one token will allow a node to send a message to any other node in its cluster. We allow optical stations to arbitrate for tokens and at a global level, we predict the number of token equivalents of power that the off-chip laser needs to generate.","PeriodicalId":438103,"journal":{"name":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"POSTER: BigBus: A Scalable Optical Interconnect\",\"authors\":\"E. Peter, Janibul Bashir, S. Sarangi\",\"doi\":\"10.1109/PACT.2017.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents BigBus, a novel on-chip photonic network for a 1024 node system. The crux of the idea is to segment the entire system into smaller clusters of nodes, and adopt a hybrid strategy for each segment that includes conventional laser modulation, as well as a novel technique for sharing power across nodes dynamically. We represent energy internally as tokens, where one token will allow a node to send a message to any other node in its cluster. We allow optical stations to arbitrate for tokens and at a global level, we predict the number of token equivalents of power that the off-chip laser needs to generate.\",\"PeriodicalId\":438103,\"journal\":{\"name\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACT.2017.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2017.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper presents BigBus, a novel on-chip photonic network for a 1024 node system. The crux of the idea is to segment the entire system into smaller clusters of nodes, and adopt a hybrid strategy for each segment that includes conventional laser modulation, as well as a novel technique for sharing power across nodes dynamically. We represent energy internally as tokens, where one token will allow a node to send a message to any other node in its cluster. We allow optical stations to arbitrate for tokens and at a global level, we predict the number of token equivalents of power that the off-chip laser needs to generate.