基于双源定位字典对的高光谱与多光谱图像融合

Juping Liang, Yifan Zhang, Shaohui Mei
{"title":"基于双源定位字典对的高光谱与多光谱图像融合","authors":"Juping Liang, Yifan Zhang, Shaohui Mei","doi":"10.1109/ISPACS.2017.8266485","DOIUrl":null,"url":null,"abstract":"Hyperpsectral image (HSI) provides abundant and detailed spectral information with limited spatial resolution. When a multispectral image (MSI) with higher spatial resolution of the same observed scene is available, this limitation on spatial resolution can be handled by applying fusion techniques. In this work, a novel HSI and MSI fusion approach using dictionary-based reconstruction is proposed. To incorporate more effective information for fusion, dual-source dictionary pair including a dictionary on low spatial resolution and a dictionary on high spatial resolution, is constructed using both HSI and MSI. Furthermore, to reduce the calculation cost, a localized strategy is applied instead of the global one. Finally, the fused result is reconstructed with dictionary using collaborative representation. Simulative experiments illustrate its outperformance over some state-of-the-art HSI and MSI fusion approaches.","PeriodicalId":166414,"journal":{"name":"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hyperspectral and multispectral image fusion using dual-source localized dictionary pair\",\"authors\":\"Juping Liang, Yifan Zhang, Shaohui Mei\",\"doi\":\"10.1109/ISPACS.2017.8266485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperpsectral image (HSI) provides abundant and detailed spectral information with limited spatial resolution. When a multispectral image (MSI) with higher spatial resolution of the same observed scene is available, this limitation on spatial resolution can be handled by applying fusion techniques. In this work, a novel HSI and MSI fusion approach using dictionary-based reconstruction is proposed. To incorporate more effective information for fusion, dual-source dictionary pair including a dictionary on low spatial resolution and a dictionary on high spatial resolution, is constructed using both HSI and MSI. Furthermore, to reduce the calculation cost, a localized strategy is applied instead of the global one. Finally, the fused result is reconstructed with dictionary using collaborative representation. Simulative experiments illustrate its outperformance over some state-of-the-art HSI and MSI fusion approaches.\",\"PeriodicalId\":166414,\"journal\":{\"name\":\"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS.2017.8266485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2017.8266485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

高光谱图像(HSI)在有限的空间分辨率下提供了丰富而详细的光谱信息。当同一观测场景具有更高空间分辨率的多光谱图像(MSI)可用时,可以通过应用融合技术来处理空间分辨率的限制。在这项工作中,提出了一种新的基于字典重建的HSI和MSI融合方法。为了融合更有效的信息,采用HSI和MSI分别构建了低空间分辨率词典和高空间分辨率词典的双源词典对。此外,为了降低计算成本,采用局部策略代替全局策略。最后,利用协同表示方法对融合结果进行字典重构。模拟实验表明,它优于一些最先进的HSI和MSI融合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hyperspectral and multispectral image fusion using dual-source localized dictionary pair
Hyperpsectral image (HSI) provides abundant and detailed spectral information with limited spatial resolution. When a multispectral image (MSI) with higher spatial resolution of the same observed scene is available, this limitation on spatial resolution can be handled by applying fusion techniques. In this work, a novel HSI and MSI fusion approach using dictionary-based reconstruction is proposed. To incorporate more effective information for fusion, dual-source dictionary pair including a dictionary on low spatial resolution and a dictionary on high spatial resolution, is constructed using both HSI and MSI. Furthermore, to reduce the calculation cost, a localized strategy is applied instead of the global one. Finally, the fused result is reconstructed with dictionary using collaborative representation. Simulative experiments illustrate its outperformance over some state-of-the-art HSI and MSI fusion approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An anti-copyscheme for laser label based on digitial watermarking A CNN-based segmentation model for segmenting foreground by a probability map A current-feedback method for programming memristor array in bidirectional associative memory Community mining algorithm of complex network based on memetic algorithm Multi-exposure image fusion quality assessment using contrast information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1