{"title":"基于软计算的非线性系统自适应误差优化控制","authors":"Ashwani Kharola, P. Patil","doi":"10.4018/IJEOE.2017070104","DOIUrl":null,"url":null,"abstract":"Thispaperelaboratesanovelhybridlearningapproachfortrainingerroroptimisationandcontrolof highlydynamictriple-linkinvertedpendulumoncart.Thestudydemonstratesarelationshipbetween shapeandnumberofmembershipfunctions(MFs)ofbothlinearandconstanttypetodetermine training error tolerance of ANFIS controller. The results are plotted which clearly highlighted supremacyofconstanttypethreetriangularshapeMFs.Mathematicalmodelandsimulinkofproposed systemhasalsobeenanalysed.Thelearningabilityanddesigningmethodologyofadaptivenetworks androbustnessofPIDcontrollersarebrieflydescribed.Finally,thestudyillustratesanofflinemode comparisonofPIDbasedANFISandNeuralcontrollersintermsofsettlingtime,steadystateerror andovershoot. KEywORdS ANFIS, Membership Functions, Neural Networks, PID, Simulation, Soft Computing, Training Error, TripleLink Pendulum","PeriodicalId":246250,"journal":{"name":"Int. J. Energy Optim. Eng.","volume":"206 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soft Computing Based Adaptive Error Optimisation for Control of Nonlinear System\",\"authors\":\"Ashwani Kharola, P. Patil\",\"doi\":\"10.4018/IJEOE.2017070104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thispaperelaboratesanovelhybridlearningapproachfortrainingerroroptimisationandcontrolof highlydynamictriple-linkinvertedpendulumoncart.Thestudydemonstratesarelationshipbetween shapeandnumberofmembershipfunctions(MFs)ofbothlinearandconstanttypetodetermine training error tolerance of ANFIS controller. The results are plotted which clearly highlighted supremacyofconstanttypethreetriangularshapeMFs.Mathematicalmodelandsimulinkofproposed systemhasalsobeenanalysed.Thelearningabilityanddesigningmethodologyofadaptivenetworks androbustnessofPIDcontrollersarebrieflydescribed.Finally,thestudyillustratesanofflinemode comparisonofPIDbasedANFISandNeuralcontrollersintermsofsettlingtime,steadystateerror andovershoot. KEywORdS ANFIS, Membership Functions, Neural Networks, PID, Simulation, Soft Computing, Training Error, TripleLink Pendulum\",\"PeriodicalId\":246250,\"journal\":{\"name\":\"Int. J. Energy Optim. Eng.\",\"volume\":\"206 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Energy Optim. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJEOE.2017070104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Energy Optim. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJEOE.2017070104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Soft Computing Based Adaptive Error Optimisation for Control of Nonlinear System
Thispaperelaboratesanovelhybridlearningapproachfortrainingerroroptimisationandcontrolof highlydynamictriple-linkinvertedpendulumoncart.Thestudydemonstratesarelationshipbetween shapeandnumberofmembershipfunctions(MFs)ofbothlinearandconstanttypetodetermine training error tolerance of ANFIS controller. The results are plotted which clearly highlighted supremacyofconstanttypethreetriangularshapeMFs.Mathematicalmodelandsimulinkofproposed systemhasalsobeenanalysed.Thelearningabilityanddesigningmethodologyofadaptivenetworks androbustnessofPIDcontrollersarebrieflydescribed.Finally,thestudyillustratesanofflinemode comparisonofPIDbasedANFISandNeuralcontrollersintermsofsettlingtime,steadystateerror andovershoot. KEywORdS ANFIS, Membership Functions, Neural Networks, PID, Simulation, Soft Computing, Training Error, TripleLink Pendulum