{"title":"混合动力汽车用锂离子电池系统的先进电热建模","authors":"C. Mi, Ben Q. Li, D. Buck, N. Ota","doi":"10.1109/VPPC.2007.4544108","DOIUrl":null,"url":null,"abstract":"The successful implementation and commercialization of hybrid electric vehicles (HEV) rely largely on energy storage systems. Lithium-ion batteries offer potential advantages in energy density, power density, and cost for this purpose. One of the challenges imposed by lithium-ion battery is the thermal management. The best operating temperature of lithium-ion battery is from -10degC to 50degC. An effective thermal management system is critical to maintain the health and life span of the battery. A good thermal management system starts with accurate prediction of the thermal conditions of the battery. This paper is aimed to evaluate the thermal management system of a lithium-ion battery pack designed for HEV applications, including estimating the thermal loss of the battery pack based on electric characteristics and experiments; predicting the temperature rise of the battery pack based on the test results of a single cell, and modeling the temperature gradients of the battery pack under different operating conditions.","PeriodicalId":345424,"journal":{"name":"2007 IEEE Vehicle Power and Propulsion Conference","volume":"308 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"Advanced Electro-Thermal Modeling of Lithium-Ion Battery System for Hybrid Electric Vehicle Applications\",\"authors\":\"C. Mi, Ben Q. Li, D. Buck, N. Ota\",\"doi\":\"10.1109/VPPC.2007.4544108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The successful implementation and commercialization of hybrid electric vehicles (HEV) rely largely on energy storage systems. Lithium-ion batteries offer potential advantages in energy density, power density, and cost for this purpose. One of the challenges imposed by lithium-ion battery is the thermal management. The best operating temperature of lithium-ion battery is from -10degC to 50degC. An effective thermal management system is critical to maintain the health and life span of the battery. A good thermal management system starts with accurate prediction of the thermal conditions of the battery. This paper is aimed to evaluate the thermal management system of a lithium-ion battery pack designed for HEV applications, including estimating the thermal loss of the battery pack based on electric characteristics and experiments; predicting the temperature rise of the battery pack based on the test results of a single cell, and modeling the temperature gradients of the battery pack under different operating conditions.\",\"PeriodicalId\":345424,\"journal\":{\"name\":\"2007 IEEE Vehicle Power and Propulsion Conference\",\"volume\":\"308 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Vehicle Power and Propulsion Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VPPC.2007.4544108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Vehicle Power and Propulsion Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VPPC.2007.4544108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Advanced Electro-Thermal Modeling of Lithium-Ion Battery System for Hybrid Electric Vehicle Applications
The successful implementation and commercialization of hybrid electric vehicles (HEV) rely largely on energy storage systems. Lithium-ion batteries offer potential advantages in energy density, power density, and cost for this purpose. One of the challenges imposed by lithium-ion battery is the thermal management. The best operating temperature of lithium-ion battery is from -10degC to 50degC. An effective thermal management system is critical to maintain the health and life span of the battery. A good thermal management system starts with accurate prediction of the thermal conditions of the battery. This paper is aimed to evaluate the thermal management system of a lithium-ion battery pack designed for HEV applications, including estimating the thermal loss of the battery pack based on electric characteristics and experiments; predicting the temperature rise of the battery pack based on the test results of a single cell, and modeling the temperature gradients of the battery pack under different operating conditions.