利用结构知识和自学习神经模糊方案的分层运动诊断

Dominik Füssel, R. Isermann
{"title":"利用结构知识和自学习神经模糊方案的分层运动诊断","authors":"Dominik Füssel, R. Isermann","doi":"10.1109/IECON.1998.723027","DOIUrl":null,"url":null,"abstract":"Fault diagnosis requires a classification system that can distinguish between different faults based on observed symptoms of the process under investigation. Since the fault symptom relationships are not always known beforehand, a system is needed which can be learned from experimental or simulated data. A fuzzy logic based diagnosis is advantageous. It allows an easy incorporation of a-priori known rules and also enables the user to understand the inference of the system. In this contribution, a new diagnosis scheme is presented and applied to a DC motor. The approach is based on a combination of structural a-priori knowledge and measured data in order to create a hierarchical diagnosis system that can be adapted to different motors. Advantages of the system are its high degree of transparency and an increased robustness.","PeriodicalId":377136,"journal":{"name":"IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200)","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":"{\"title\":\"Hierarchical motor diagnosis utilizing structural knowledge and a self-learning neuro-fuzzy scheme\",\"authors\":\"Dominik Füssel, R. Isermann\",\"doi\":\"10.1109/IECON.1998.723027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault diagnosis requires a classification system that can distinguish between different faults based on observed symptoms of the process under investigation. Since the fault symptom relationships are not always known beforehand, a system is needed which can be learned from experimental or simulated data. A fuzzy logic based diagnosis is advantageous. It allows an easy incorporation of a-priori known rules and also enables the user to understand the inference of the system. In this contribution, a new diagnosis scheme is presented and applied to a DC motor. The approach is based on a combination of structural a-priori knowledge and measured data in order to create a hierarchical diagnosis system that can be adapted to different motors. Advantages of the system are its high degree of transparency and an increased robustness.\",\"PeriodicalId\":377136,\"journal\":{\"name\":\"IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200)\",\"volume\":\"133 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"68\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.1998.723027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IECON '98. Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.1998.723027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

摘要

故障诊断需要一个分类系统,该系统可以根据观察到的正在调查的过程的症状区分不同的故障。由于故障症状关系并不总是预先知道的,因此需要一个可以从实验或模拟数据中学习的系统。基于模糊逻辑的诊断是有利的。它允许一个简单的先验已知规则的合并,也使用户能够理解系统的推理。在这篇贡献中,提出了一种新的诊断方案,并应用于直流电机。该方法基于结构先验知识和测量数据的结合,以创建可适应不同电机的分层诊断系统。该系统的优点是透明度高,鲁棒性增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical motor diagnosis utilizing structural knowledge and a self-learning neuro-fuzzy scheme
Fault diagnosis requires a classification system that can distinguish between different faults based on observed symptoms of the process under investigation. Since the fault symptom relationships are not always known beforehand, a system is needed which can be learned from experimental or simulated data. A fuzzy logic based diagnosis is advantageous. It allows an easy incorporation of a-priori known rules and also enables the user to understand the inference of the system. In this contribution, a new diagnosis scheme is presented and applied to a DC motor. The approach is based on a combination of structural a-priori knowledge and measured data in order to create a hierarchical diagnosis system that can be adapted to different motors. Advantages of the system are its high degree of transparency and an increased robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel zero-voltage soft-switching converter for switched reluctance motor drives A novel two-quadrant zero-current-transition converter for DC motor drives Design support system for Japanese kimono Hierarchical motor diagnosis utilizing structural knowledge and a self-learning neuro-fuzzy scheme Torque control of harmonic drive gears with built-in sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1