{"title":"微生物组学、宏基因组学和代谢组学研讨会","authors":"S. Hassoun, C. Huttenhower","doi":"10.1145/3107411.3108172","DOIUrl":null,"url":null,"abstract":"Microbiota are ecological communities of microorganisms found throughout nature. In humans and animals, microbiota communities can reside on or within the body, and exist in a commensal or mutualistic relationship with their host to impact physiological functions and play critical roles in the host's development. These microbial communities can be very complex. One such example is the intestinal microbiota, comprising hundreds of species that interact with other microorganisms in the community as well as their host. Recent studies have demonstrated that microbiota impacts a wide range of physiological processes, including digestion, development of the immune system, and inflammation. Further, significant alterations in the intestinal microbiota composition has shown to correlate with several diseases, including obesity diabetes, cancer, asthma, and even autism spectrum disorder. Characterizing the microbiota and understanding its relation to health and disease stand to significantly improve human health. Efforts to characterize microbiota have greatly benefited from technical advances in DNA sequencing. In particular, low-cost culture-independent sequencing has made metagenomic and metatranscriptomic surveys of microbial communities practical, including bacteria, archaea, viruses, and fungi associated with the human body, other hosts, and the environment. The resulting data have stimulated the development of many new computational approaches to meta'omic sequence analysis, including metagenomic assembly, microbial identification, and gene, transcript, and pathway metabolic profiling. Further, recent advances in untargeted metabolomics have stimulated the development of many tools that enhance the functional profiling of microbial communities. Through invited talks, this workshop will highlight recent advances computational methods for metagenomics and metabolomics, and present pressing challenges. A hands-on tutorial will provide an introduction to computational metagenomics. This workshop is timely, and will broaden the scope of the conference to cover such pressing important topics.","PeriodicalId":246388,"journal":{"name":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","volume":"313 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Workshop on Microbiomics, Metagenomics, and Metabolomics\",\"authors\":\"S. Hassoun, C. Huttenhower\",\"doi\":\"10.1145/3107411.3108172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microbiota are ecological communities of microorganisms found throughout nature. In humans and animals, microbiota communities can reside on or within the body, and exist in a commensal or mutualistic relationship with their host to impact physiological functions and play critical roles in the host's development. These microbial communities can be very complex. One such example is the intestinal microbiota, comprising hundreds of species that interact with other microorganisms in the community as well as their host. Recent studies have demonstrated that microbiota impacts a wide range of physiological processes, including digestion, development of the immune system, and inflammation. Further, significant alterations in the intestinal microbiota composition has shown to correlate with several diseases, including obesity diabetes, cancer, asthma, and even autism spectrum disorder. Characterizing the microbiota and understanding its relation to health and disease stand to significantly improve human health. Efforts to characterize microbiota have greatly benefited from technical advances in DNA sequencing. In particular, low-cost culture-independent sequencing has made metagenomic and metatranscriptomic surveys of microbial communities practical, including bacteria, archaea, viruses, and fungi associated with the human body, other hosts, and the environment. The resulting data have stimulated the development of many new computational approaches to meta'omic sequence analysis, including metagenomic assembly, microbial identification, and gene, transcript, and pathway metabolic profiling. Further, recent advances in untargeted metabolomics have stimulated the development of many tools that enhance the functional profiling of microbial communities. Through invited talks, this workshop will highlight recent advances computational methods for metagenomics and metabolomics, and present pressing challenges. A hands-on tutorial will provide an introduction to computational metagenomics. This workshop is timely, and will broaden the scope of the conference to cover such pressing important topics.\",\"PeriodicalId\":246388,\"journal\":{\"name\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"volume\":\"313 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3107411.3108172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3107411.3108172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Workshop on Microbiomics, Metagenomics, and Metabolomics
Microbiota are ecological communities of microorganisms found throughout nature. In humans and animals, microbiota communities can reside on or within the body, and exist in a commensal or mutualistic relationship with their host to impact physiological functions and play critical roles in the host's development. These microbial communities can be very complex. One such example is the intestinal microbiota, comprising hundreds of species that interact with other microorganisms in the community as well as their host. Recent studies have demonstrated that microbiota impacts a wide range of physiological processes, including digestion, development of the immune system, and inflammation. Further, significant alterations in the intestinal microbiota composition has shown to correlate with several diseases, including obesity diabetes, cancer, asthma, and even autism spectrum disorder. Characterizing the microbiota and understanding its relation to health and disease stand to significantly improve human health. Efforts to characterize microbiota have greatly benefited from technical advances in DNA sequencing. In particular, low-cost culture-independent sequencing has made metagenomic and metatranscriptomic surveys of microbial communities practical, including bacteria, archaea, viruses, and fungi associated with the human body, other hosts, and the environment. The resulting data have stimulated the development of many new computational approaches to meta'omic sequence analysis, including metagenomic assembly, microbial identification, and gene, transcript, and pathway metabolic profiling. Further, recent advances in untargeted metabolomics have stimulated the development of many tools that enhance the functional profiling of microbial communities. Through invited talks, this workshop will highlight recent advances computational methods for metagenomics and metabolomics, and present pressing challenges. A hands-on tutorial will provide an introduction to computational metagenomics. This workshop is timely, and will broaden the scope of the conference to cover such pressing important topics.